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Abstract
User-level tooling support for profiling Java applications
executing on modern JVMs for desktop and server is
quite mature – from OpenJDK’s Java Flight Recorder [5]
enabling low-overhead CPU and heap profiling, through
third-party async profilers (e.g. async-profiler [7], honest-
profiler [11]), to OpenJDK’s support for low-overhead
tracking of allocation call sites [1].
On the other hand, despite architectural similarities

between language execution environments, tooling sup-
port for analyzing performance of Java code on Android
lags significantly behind. Arguably the most popular,
but also virtually the only tool in this category is An-
droid Profiler [3] – it provides process-level information
about CPU, Java heap, and network activities. It also
provides support for method tracing and sampling. How-
ever, the former exhibits high overhead and the latter,
while providing better performance, sacrifices precision.
Information provided by Android Profiler can be aug-
mented with data collected by other tools, particularly
systrace [4] which collects data at the operating system
level. Unsurprisingly, third-party tools have also started
emerging recently, such as Facebook’s Profilo [6] frame-
work. However, using these additional tools requires
working with multiple tool-chains, may require a certain
amount of manual effort (e.g., building application in a
special way, inserting profiling framework API calls into
the application), and it is often non-trivial to infer in-
teresting information from the data being collected (e.g.
because only part of the tooling framework is publicly
available).
In this paper we describe our work on Nanoscope, a

single open source, low-overhead, and extensible tool that
not only works on unmodified Android applications and
provides precise method traces with low overhead, but
also aims to present programmers with selected relevant
information within the same framework to help them de-
velop an intuition behind a concrete non-performant ap-
plication behavior. The tradeoff here is that Nanoscope
requires a custom Android build as it relies on addi-
tional support from ART. In this paper, we will de-
scribe Nanoscope’s design and implementation, present
examples of performance-related information that can be
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obtained from the tool, and discuss Nanoscope-related
overheads.

1 Introduction
Compared to “regular” Java programs (i.e., executing
on a desktop and on a server), tooling for Android pro-
grams (i.e., executing on mobile devices) lags significantly
behind. Arguably, the most popular analysis tool for An-
droid to locally identify performance problems comes
from Google itself in the form of Android Profiler [3],
providing information about an executing program and
its threads, such as per-process heap memory and CPU
usage, network traffic, and per-thread execution data
in the form of method traces. In our experience, for a
reasonably tuned applications, the most interesting piece
of information provided by Android Profiler are method
traces, as such applications do not exhibit sudden or
large spikes in object allocation rates or per-process
CPU usage. Android Profiler collects these traces ei-
ther by instrumenting all application Java methods or
by sampling all application threads - the former sacri-
fices performance (as not only all methods of all threads
are traced, but tracing requires inter-thread coordina-
tion) and the latter sacrifices precision (as not every
method execution is recorded). Other tool-chains (e.g.,
systrace [4]) exist to augment information provided by
Android Profiler, but they either cannot provide VM-
level information (e.g., lock contention) or they cannot
operate on unmodified production application files (e.g.
require special compilation process or in-application API
calls), and in general cannot provide uniform user expe-
rience within a single framework. One exception to this
rule is the Profilo [6] framework developed by Facebook,
but this toolkit has been only partially open-sourced
(e.g., without visualization tools) and is also geared to-
wards aggregating performance-related information from
applications running in production rather than providing
the ability to interactively deep dive into specific perfor-
mance problems of a given single application execution.
In order to overcome limitations of the existing An-

droid performance-focused tools, we started developing
our own framework called Nanoscope. In designing and
implementing Nanoscope we were guided by the following
principles:

• as the starting point, we would like to get similar
types of information to that provided by Android
Profiler with precise execution traces, but we are
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not willing to pay the price of using Android Pro-
filer tracing as it can slow down execution of our
applications by an order of magnitude

• we would like to overlay additional important met-
rics at the OS level (e.g., CPU utilization) and at
the VM level (e.g. lock contention) directly on the
method execution traces

• we would like to be able to analyze performance
of unmodified production applications

• when analyzing performance of our mobile appli-
cations we are mostly interested in the behavior of
the main thread

In the following section we describe how these princi-
ples have been reflected in the design and implementation
of Nanoscope. Please note that this is very much work
in progress!

2 Design and implementation
The focus of the first open source release of “basic”
Nanoscope [9, 10] was to provide precise method tracing
similar to that offered by Android Profiler but at a much
lower cost. The goal of the second “extended” version
of Nanoscope1 is to overlay additional information on
method execution traces. Currently, Nanoscope is only
supported in Android 7.1.2 as it requires modifications
to Android Runtime [2] (ART) which are specific to a
given OS version.

2.1 “Basic” Nanoscope

Currently Nanoscope focuses on analyzing a single thread
(e.g., the main thread of the application) – it collects
method tracing data into a thread-local data structure,
where it records method entry end exit events along
with their timestamps. It is therefore straightforward to
extend it to analyze multiple threads – traces for multiple
threads can be aligned in the UI using their timestamps
in post-processing. We report overheads of collecting
traces for the main thread (which in our application is
the most active thread in terms of Java code execution)
in Section 3 – evaluation of method trace collection for
multiple threads is left for future work.
In order to implement method tracing in Nanoscope

we needed to modify both the interpreter and the opti-
mizing compiler so that the code to record a timestamp
and a method name in an in-memory buffer is injected
for each method prologue and epilogue – the buffer is
flushed to persistent storage once tracing is done. Trac-
ing can be enabled/disabled via system properties (no
application modification required) or via in-application
API calls (for increased flexibility in controlling a tracing
span). Method traces for a given thread are visualized as
a flame graph in a custom browser-based UI written in

1Also open-sourced recently into the same Nanoscope repositories

JavaScript that needed to be implemented to efficiently
handle large volumes of tracing data. In addition to “reg-
ular” Java methods, “basic” Nanoscope also traces class
loading and initialization time, which are represented
as “virtual”2 methods. A more detailed description of
“basic” Nanoscope can be found in Nanoscope blog [8].

2.2 “Extended” Nanoscope

The idea for extending Nanoscope stemmed from the
observation that analyzing flame graphs themselves is
not the most intuitive method of gaining insight into
a given thread’s execution anomalies. Even if certain
methods take a long time to execute, it is not always
immediately clear why that is, particularly if the meth-
ods do not contain obvious “hot spots” (e.g., hot loops).
Consequently, we decided to extend Nanoscope to over-
lay additional metrics on the flame graph to help analyze
different aspects of thread’s execution at the same time.
In particular, “extended” Nanoscope supports a sam-
pling framework described in Section 2.2.1 where various
interesting per-thread events (e.g. CPU utilization) can
be periodically recorded for further analysis – the frame-
work has been implemented in such a way that it is
relatively easy to both add additional metrics to be
tracked (as all of them are collected within the same
function called at the time of collecting a sample) and
to visualize them in our UI (as each one is visualized
on a separate canvas whose implementation can be eas-
ily derived from the existing ones). We have also made
certain additional “surgical” modifications to ART to
track other interesting events in the thread’s lifetime,
such as thread state transitions that describe when a
thread is blocked waiting for a lock, sleeping, performing
GC-related activities, etc.

2.2.1 Sampling framework

Design and implementation of Nanoscope’s sampling
framework has been inspired by the profilers imple-
mented for “regular” (server or desktop) Java appli-
cations, such as async-profiler [7] or honest-profiler [11].
The main idea is to use a system call to schedule a peri-
odic signal generation by the OS that will be delivered to
a given process, or in our case, a given thread. In terms
of implementation, this has been achieved by modifying
relevant parts of ART.
There are multiple ways to have OS to periodically

send a signal to a given thread. One method is to use
the perf event open system call – an apparent risk of
using this method is that a thread receiving a signal can
be interrupted during another system call which could

2In the sense of methods that do not exist in reality rather then
in the sense of virtual method dispatch.
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Figure 1. Nanoscope UI window

result in an application crash, but we have never experi-
enced this situation in practice. Another method is to
use timer settime system call with a clock measuring a
given thread’s CPU time, which is supposed to only inter-
rupt a thread in user-level code, but in our experiments
we could not achieve desired fidelity of signal delivery
(at least every 1ms) using this method. Consequently,
we decided to support both methods in Nanoscope – a
method is selected when tracing is initiated, defaulting
to using perf event open system call.
Currently, the most important (in terms of insights

it provided) metric collected in the sampling framework
is CPU utilization - it is calculated by obtaining wall
clock time (same mechanism as used for timestamps
already collected by Nanoscope for method tracing) and
CPU time (via clock gettime), and calculating the ra-
tio of the two. However, we also experimented with other
metrics, such as the number of page faults (major and
minor) and the number of context switches per sam-
pling period (both collected by reading counters set up
by the perf event open system call and subsequently
available in a signal handler), as well as allocation rates
per sampling period (collected by enabling ART Run-
timeStats tracking and reading from it at every sample).
We demonstrate how these metrics have been visualized
in Section 2.3.

2.3 Nanoscope in action

Currently, Nanoscope focuses on analyzing performance
of a single (in most cases main) thread, and our visual-
ization tool reflects that. In Figure 1 we present a view
of the entire Nanoscope UI window showing execution
trace of the main thread in one of our applications. This
particular execution represents a startup sequence of the
application – we started the application and let it exe-
cute for ∼10s (on Nexus 6p running Nanoscope-enabled
ROM based on Android 7.1.2). At the bottom of the
figure is the flame graph 3 representing execution of the
main thread, and at the top there are charts for various
additional execution metrics (from top to bottom):

• CPU utilization
• number of context switches
• number of page faults (minor in green, major in
red)

• bytes allocated by the whole process (minus freed
ones)

• object allocated by the whole process (minus freed
ones)

• total bytes allocated by the thread
• total bytes freed by the thread (none in this case)
• current thread state (e.g. executing native method,
blocked on a lock, waiting on a condition variable,
sleeping, etc.)

3We omitted names of methods in the flame graph for confiden-
tiality reasons
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Figure 2. Renderer thread’s nFence method

We currently display all metrics that are being collected,
but in the near future we plan to make Nanoscope more
configurable – have the user choose which metrics are of
interest and visualize only these metrics. At the bottom
left corner there is also a window containing detailed
information about the method currently selected in the
flame graph (in this case the main method of this thread,
represented by top-most frame in the flame graph), such
as duration of the selected method call, average duration
of this method’a execution across all its invocations,
number of times this method has been called, etc.

At this stage of the project we have not yet taken any
actions on the data generated by Nanoscope, but it is ev-
ident that certain, potentially useful, observations would
be difficult to make without the kind of information it
provides.
For example, focusing on the part of the execution

trace representing the end of the startup sequence when
the application is largely idle waiting for user input (right-
hand side of Figure 1) reveals that while the main thread
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Figure 3. Nanoscope overheads

no longer allocates any memory (as expected), the overall
number of objects in the application process is still
growing. It does not necessarily indicate existence of a
real problem, but considering that the main thread is the
one expected to execute a large portion of application’s
Java code, it may be worth investigating increase in
object allocations on background threads.
Another example is unusually long (almost 100ms)

period of low CPU utilization while executing a na-
tive nFence method that belongs to Android’s renderer
thread (it can be observed as a light blue rectangle
in a chart describing current thread state metric 4) –
a zoomed-in relevant portion of the execution trace is
presented in Figure 2. Again, it is not necessarily an
indication of an actual (and fixable) problem but may
be worth a second look.

3 Overheads
In its current form, as compared to Android Profiler,
Nanoscope strikes a certain tradeoff – the analysis is
focused on a single thread, but at least some execution
metrics go beyond what Android Profiler can produce,
and the overhead of data collection is expected to be
much lower. While we already made an argument for
usefulness of execution metrics provided by Nanoscope,
we have not yet discussed its overheads.

In order to measure Nanoscope-related overheads, we
executed startup sequence of the same application we
used for demonstrating Nanoscope features in Section 2.3
100 times and measured the time from application start
to the point when it finished one of the internally de-
fined execution spans indicating the end of the startup
sequence. We measured execution times for four different
configurations:

4All represented thread states are color-coded and light blue color
indicates native method call.
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• baseline ROM – “clean” build of unmodified
Android OS 7.1.2 that is the basis for Nanoscope
implementation

• “basic” Nanoscope ROM – a build of Android
OS 7.1.2 with “basic” Nanoscope extensions but
with all data collection disabled

• “basic” Nanoscope – a build of Android OS
7.1.2 with “basic” Nanoscope extensions and with
method tracing collection enabled

• “extended” Nanoscope – a build of Android OS
7.1.2 with “extended” Nanoscope extensions and
with both method tracing and additional metrics
collection enabled

In Figure 3 we plot average execution times (along with
95% confidence intervals) for the Nanoscope-enabled con-
figurations normalized with respect to the execution time
for unmodified Android 7.1.2 (“baseline”). As we can see,
the overhead of “base” Nanoscope is very reasonable,
and does not exceed 10%, which compares very favorably
with Android Profiler that can slow down application ex-
ecution by an order of magnitude when collecting precise
traces. It is somewhat surprising that even with all trac-
ing disabled, the overhead of Nanoscope-enabled build is
noticeable – we attribute that to the code that is added
to both interpreter and optimizing compiler whose fast
path is always executed, but we defer more thorough
investigation of this issue to future work. More impor-
tantly, however, the overhead of the sampling framework
and additional several metrics collection is limited to a
total of 18%.

4 Future directions
Our work on Nanoscope has only just begun, and while
we feel like the tool can already be useful in locally
diagnosing various performance problems, we plan to
continue refining and extending Nanoscope in foreseeable
future, with the help of both internal customers and a
larger open source community. In particular, we would
like to extend Nanoscope to collect data for multiple
threads. In addition to more work at the VM level that
would likely be required to accomplish this, it would
also require different ways of visualizing execution of,
potentially, a large number of threads – flame graphs are
not very practical in this kind of setting. We may also
consider further refining information provided by the tool
– for example to not only indicate points of lock contention
or waiting on a condition variable but also to highlight
which threads exactly are involved in these kinds of
events. Finally, we are thinking of providing additional
information about object allocations, for example via
low-overhead heap sampling similar to the one proposed
for the HotSpot JVM [1].
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