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ABSTRACT
Transactional memory (TM) eliminates many problems as-
sociated with lock-based synchronization. Over recent years,
much progress has been made in software and hardware im-
plementation techniques for TM. However, before transac-
tional memory can be integrated into mainstream program-
ming languages, we must precisely define its meaning in the
context of these languages. In particular, TM semantics
should address the advanced features present in the existing
software TM implementations, such as interactions between
transactions and locks, explicit user-level abort and support
for legacy code.

In this paper, we address these topics from both theo-
retical and practical points of view. We give precise for-
mulations of several popular TM semantics for the domain
of sequentially consistent executions and show that some of
these semantics are equivalent for C++ programs that do
not contain other forms of synchronization. We show that
lock-based semantics, such as Single Global Lock Atomicity
(SLA) or Disjoint Lock Atomicity (DLA), do not actually
guarantee atomicity for race-free programs and propose a
new semantics, Race-Free Atomicity (RFA) that gives such
a guarantee. We compare these semantics from the pro-
grammer and implementation points of view and explain
why supporting non-atomic transactions is useful. Finally,
we propose a new set of language constructs that let pro-
grammers explicitly specify whether transactions should be
atomic and describe how these constructs interact with user-
level abort and legacy code.

Categories and Subject Descriptors
D.1.3 [Programming techniques]: Concurrent Program-
ming—Parallel Programming ; D.3.3 [Programming lan-
guages]: Language Constructs and Features—Concurrent
programming structures; Frameworks
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1. INTRODUCTION
Transactional memory (TM) promises to provide a sim-

pler synchronization abstraction than locks. From a pro-
grammer’s point of view, a transaction executes atomically;
that is, as a single indivisible operation whose steps do not
interleave with actions of other threads. TM implementa-
tions enable concurrency by executing transactions in paral-
lel whenever such execution does not violate the illusion of
atomicity. Transactional memory has been a topic of active
research for several years and is now on the verge of becom-
ing a practical programming technology. Multiple software
TM implementations have been available for a while [18, 16,
25, 17, 24, 12, 31], and Sun has recently announced hard-
ware TM support in an upcoming machine [11]. Before,
however, transactions can be adopted as a practical pro-
gramming technique by a wide community of programmers,
it is necessary to define their precise meaning in the context
of mainstream programming languages such as C/C++ and
Java.

Despite years of transaction research in the context of
database systems, integrating transactions into program-
ming languages has turned out to be a non-trivial task. The
challenges of defining transactional memory semantics come
from the significant differences between the way shared data
are accessed in database systems and in multi-threaded pro-
grams. In the database world, all data accesses are trans-
actional. In the context of programming languages, shared
data may be accessed both inside and outside of transac-
tions. In this case, most software TM (STM) implementa-
tions do not provide an illusion of atomicity, as they do
not detect data conflicts between transactional and non-
transactional memory accesses.

In this paper we investigate TM semantics in the context
of C++. C++ gives well-defined behavior only to race-free
programs [6, 8]. A programmer is expected to synchronize
concurrent accesses to shared data by using locks or spe-
cial atomic < T > variables (which behave similar to Java

49



Initially x = 0
Thread 1 Thread 2

1: atomic {
2: t1 = x;
3: x = 1;
4: t2 = x;
5: }

Can t1 != t2 ?

Figure 1: Under SLA semantics, this C++ program
can have arbitrary behavior because it contains a
data race on x. In particular, Thread 1 is allowed to
see t1 != t2.

volatile variables). In turn, the system guarantees sequen-
tial consistency — a program appears to execute as a simple
interleaving of actions of all threads in which each read of a
shared variable sees the last value written to that variable. 1

Many researchers have suggested that transactions should
have Single Lock Atomicity (SLA) semantics [20, 33, 5]. Un-
der SLA, transactions behave as if they were protected by
a single program-wide mutual exclusion lock. In race-free
C++ programs, critical sections protected by the same lock
appear to execute sequentially with respect to each other.
Similarly, the actions of one transaction appear to com-
plete either before or after all actions of another transac-
tion. Thus, SLA effectively guarantees that transactions are
serializable. SLA is an attractive choice for C++ TM se-
mantics because of its simplicity and practicality. Because
the C++ memory model gives undefined semantics to pro-
grams with data races, TM implementations do not have to
provide strong atomicity [4]; that is, they do not have to
isolate transactions from concurrent non-transactional ac-
cesses that form data races with transactional memory ac-
cesses. For example, SLA semantics does not require TM im-
plementations to track conflicts between transactional and
non-transactional accesses to x in the program shown in Fig-
ure 1; the behavior of this program is undefined because it
contains a data race on x. Recent work has demonstrated
that SLA can be efficiently implemented in an STM with-
out imposing any restrictions on the programming actions
performed inside transactions [28].

In one respect, however, SLA weakens the promise of TM:
When transactions contain nested synchronization (that is,
locks or C++ atomic variables), SLA allows behaviors that
could not occur if transactions executed as indivisible ac-
tions. Consider the example in Figure 2. Thread 1’s trans-
action communicates a value to non-transactional code in
Thread 2 and then waits for the response. The communi-
cation is performed via C++ atomic variables, which are
synchronization constructs and do not contribute to data
races. This program terminates only if non-transactional
accesses in Thread 2 are allowed to violate the atomicity
of Thread 1’s transaction. 2 SLA and other lock-based se-

1C++ also provides low-level atomic variables that support
more complicated behaviors; these constructs, however, are
intended for expert programmers with good understanding
of weak memory models.
2Some might argue that this behavior violates isolation
rather than atomicity. Indeed, there is a mismatch in ter-
minology used by the programming languages and database
communities. We side with the programming language com-
munity and use the term atomicity to describe the situation

Initially atomic<int> v = 0, atomic<int> w = 0
Thread 1 Thread 2

1: atomic {
3: v = 1;
5: while (v != 1) {}
6: w = 1;
7: while (w != 1) {}
8: }

Can this program terminate?

Figure 2: SLA does not guarantee atomicity in race-
free programs.

mantics (e.g., DLA, ALA and ELA [26]) allow this behavior
as locks in general do not guarantee atomicity for race-free
programs [13].

SLA and other lock-based semantics also provide a poor
basis for defining the semantics of user-level abort. A user-
level abort (such as the __tm_abort keyword in [28]) allows
a programmer to roll back a transaction explicitly. Crit-
ical sections protected by locks cannot be rolled back, so
lock-based analogies provide no guidance with respect to
the semantics of a user-level abort.

Another complication for C++ TM semantics comes from
the requirement to support legacy code; that is, uninstru-
mented code that has not been compiled for transactional
execution. Supporting uninstrumented code allows transac-
tions to perform unrestricted I/O and to interact with ex-
isting precompiled libraries that are available only in binary
form. But the requirement of supporting legacy code con-
flicts with the requirement to support user-level aborts and
with the desire to provide atomicity. Without instrumenta-
tion, STM systems cannot support user-level abort of legacy
code. Furthermore, without instrumentation, STM systems
cannot detect conflicts between legacy code and transac-
tions. STM systems can still provide SLA semantics in this
case by serializing the execution of all transactions, but STM
systems cannot practically guarantee atomicity for race-free
programs that contain lock-based synchronization hidden in
legacy code. 3

We believe that the best way to resolve these conflicting
requirements and at the same time to provide the program-
mer with transactions that are guaranteed to be atomic is
to provide two sets of language constructs for transactional
memory. The first construct guarantees that a transaction is
atomic and can be rolled back via a user-level abort at any
time, but it disallows the transaction to call legacy code.
The second construct guarantees that a transaction is seri-
alizable and allows the transaction to call legacy code, but
it places restrictions on user-level aborts inside the transac-
tion.

In this paper, we propose a practical TM semantics for
C++ that follows these design principles. In particular, we
make the following contributions:

• We introduce a framework for describing and reason-
ing about transactional properties and the semantics of

where all actions inside a transaction do not interleave with
the actions of other threads.
3STM systems could provide atomicity in this case by stop-
ping all non-transactional threads. It might also be possible
to provide atomicity in this case by using binary translation
or hardware support for unbounded transactional memory.
We do not consider such approaches practical for C++.
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transactions in the context of programming languages
such as C++ whose semantics assign well-defined be-
haviors only to race-free programs. (Section 2.)

• We investigate the properties of SLA and compare it to
a weaker semantics, Disjoint Lock Atomicity (DLA) [26].
We prove that these semantics are equivalent for C++
programs without nested synchronization. Further-
more, both DLA and SLA provide atomicity for race-
free programs without nested synchronization. We fur-
ther argue that DLA makes reasoning for the program-
mer more complicated without providing significant
additional implementation flexibility. (Section 3.)

• We define a new TM semantics called Race-Free Atom-
icity (RFA) that guarantees atomicity for all race-free
programs, including those with nested synchroniza-
tion. Furthermore, we prove that for programs with-
out nested synchronization SLA and RFA semantics
are equivalent. (Section 4.)

• We discuss the semantics of user-level abort and show
that completely ignoring the effects of aborted trans-
actions imposes requirements that effectively eliminate
the implementation flexibility of semantics weaker than
strong atomicity. (Section 5.)

• We propose a new set of language-level transactional
constructs that explicitly differentiate between trans-
actions that provide atomicity and transactions that
allow unrestricted use of legacy code. We also describe
how these constructs interact with user-level abort and
nested synchronization. (Section 6.)

2. FRAMEWORK
In this section, we describe a framework for reasoning

about TM semantics. Our framework considers only se-
quentially consistent executions. This restriction is consis-
tent with C++ memory model that assigns sequentially con-
sistent behavior to correctly synchronized or race-free pro-
grams 4.

We use a simple framework based on the C++ memory
model without low-level atomics [6]. A thread execution
consists of a set of actions together with a partial order on
these actions defined by the sequenced-before relation [8].
(C++ sequenced-before relation is analogous to the Java
program order relation [23], except that it leaves the order
of argument evaluation undefined.)

Thread actions may include the following: reads and writes
to shared memory (data accesses), reads and writes to syn-
chronization variables (that is, C++ atomic variables), lock
acquire and release operations, and special start and commit
transaction operations that denote the scope of a transac-
tion. Given a transaction T , we use the notation TS and TC

to denote its start and commit operations. Each transaction
start operation should have a matching transaction commit
operation. A transaction start operation is sequenced before
all other actions executed by the transaction. All actions
executed by a transaction are sequenced before its commit
operation. At this point, we assume that transactions do not
contain user-level abort. For simplicity, we also do not allow

4with the exception of programs that contain low-level
atomic variables

nested transactions. (We can easily extend our framework
to support closed nested transactions, as such transactions
do not affect the inter-thread semantics.)

We call lock operations and operations on synchronization
variables synchronization actions. We call actions executed
within the scope of a transaction (that is, the actions that
are ordered in between of start and commit operations of
some transaction by the sequenced-before relation) trans-
actional actions. We call other actions non-transactional
actions. We use the term nested synchronization to denote
transactional actions that are synchronization actions.

A program execution consists of a set of thread execu-
tions together with a total execution order on actions of all
threads, which satisfy the following properties: (1) Each
thread execution is consistent with the C++ single-threaded
semantics. (2) The execution order is consistent with the
sequenced-before orders of each thread. (3) As required by
sequential consistency, each read of a memory location sees
the value written by the most recent write to that memory
location in the execution order or the initial value of the
memory location if the memory location was not written by
any thread before the read.

Given a program execution E, we denote by actions(E)
the set of actions in that execution, and by <E the execu-
tion order of those actions. Given an action A, we denote
the thread that executed A as thread(A). Similarly, given
a transaction T , we denote the thread that executed T as
thread(T ). For brevity, we sometimes use the term execu-
tion to refer to a program execution.

We use a standard definition for conflicting data accesses,
namely, two data accesses executed by different threads con-
flict if they access the same memory location, and at least
one of them is a write. We also extend the definition of
conflict to synchronization actions. Two synchronization ac-
tions executed by different threads conflict if either (1) they
access the same synchronization variable, and at least one of
them is a write, or (2) they operate on the same lock. Two
transactions conflict if they execute conflicting actions.

A data race occurs when an execution contains two con-
flicting data accesses that are adjacent to each other in the
execution order; that is, when two conflicting access may
execute concurrently. An execution is race-free if it contains
no data races. Boehm and Adve [6] show that this definition
of a data race (type-1 data race) results in the same notion
of program race-freedom as a Java-style definition of a data
race via the happens-before relationship (type-2 data race).
A program execution may contain a type-2 data race even if
it contains no type-1 data race. (For example, two conflict-
ing data accesses separated by a third non-conflicting data
access form a type-2 data race but not a type-1 data race.)
In this case, however, a program also has another execution
where the conflicting data accesses are adjacent, and thus
form a type-1 data race.

By itself, our framework places no restrictions on the inter-
leaving of transactional actions with actions of other threads.
These restrictions are imposed by a TM semantics, which
we define simply as a subset of program executions. Given
a semantics (a set of executions) S, we call an execution E
legal under semantics S if it belongs to S. A well-formed
TM semantics should not impose restrictions not related to
the placement of transactional actions in the execution or-
der. In particular, it should contain all the executions in
which transactional actions do not interleave with actions of
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other threads. It should also contain no executions with a
data race between two transactional actions. In the rest of
this paper we consider only TM semantics that satisfy these
properties.

C++ assigns well-defined behavior only to race-free pro-
grams. It is therefore important to define what programs
should be considered race-free. We say that a program P
is race-free under semantics S if all executions of P legal
under S are race-free. Otherwise, a program is racy. Note
that in our framework, the definition of race-freedom makes
no sense without a semantics, as a racy execution counts
toward determination of the program race-freedom only if it
is legal under the given semantics.

TM semantics thus defines both a set of executions that a
programmer can use to reason about the program behavior
and a set of execution that a programmer can use to reason
about the program race-freedom. A program that is race-
free under a particular semantics should behave according
to one of its executions legal under that semantics. A pro-
gram that is racy under a particular semantics has undefined
behavior.

We say that two executions E and E′ of a program P are
equivalent if (1) actions(E) = actions(E′), (2) for any two
actions A and B such that A <E B, either A <E′ B or
A and B are non-conflicting actions executed by different
threads, and (3) for any two actions A and B such that
A <E′ B, either A <E B or A and B are non-conflicting
actions executed by different threads. It is easy to see that
equivalent executions of a race-free program result in the
same visible behavior. Each read of a variable sees the same
value. This value is determined by the last write to the
variable in the execution order, which is the same because
the equivalence preserves the order of conflicting actions.
The final state of the memory is also the same, as for each
memory location this state is determined by the last write to
that location, which is again the same because equivalence
does not reorder writes to the same memory location.

In the rest of this paper we use the following lemma to
reason about the equivalency of program executions:

Lemma 1. Let E be a race-free execution of the form
(P, F, A, S), where P , F and S are arbitrary sequences of
actions (P and S might be empty), A is a single action such
that no action in F is executed by the same thread that exe-
cuted A and either 1) A is not a synchronization action or
2) F contains no synchronization actions that conflict with
A. Then, execution E′ = (P, A, F, S) is equivalent to E.

Proof. Let F = (F1 . . . Fn). We first observe that Fn

and A cannot conflict. If Fn and A are data accesses then
they cannot conflict because E is race-free. If Fn and A
are synchronization actions then they cannot conflict by the
preposition of the lemma. Finally, if only one of Fn and A is
a synchronization action, they cannot conflict by definition
of conflicting actions.

Let E′′ = (P, F1 . . . Fn−1, A, Fn, S). E′′ and E are equiva-
lent because they differ only by the order of Fn and A, which
do not conflict. We now prove the lemma by induction on
length of F . If n == 1 then E′′ == E′, so E′ is equivalent
to E. Assume that the lemma holds for any length of F
that is less than n. Then E′ is equivalent to E′′, and thus
is equivalent to E.

Two TM semantics S1 and S2 are equivalent for a class
of programs C if: (1) Any program in C that is race-free

under S1 is race-free under S2; (2) Any program in C that
is race-free under S2 is race-free under S1; (3) For any race-
free program P in C, any execution of P that is legal under
S1 is either legal under S2 or is equivalent to an execution
legal under S2. (4) For any race-free program P in C, any
execution of P that is legal under S2 is either legal under S1

or is equivalent to an execution legal under S1.
We now formally define what we mean by atomicity and

serializability:

• In a given execution, a transaction is atomic if its ac-
tions do not interleave with actions of other threads.
Formally, a transaction T is atomic in execution E if
any action A such that TS <E A <E TC is executed
by the same thread that executed T (thread(T ) =
thread(A)). An execution is atomic if all transactions
in that execution are atomic.

• In a given execution, a transaction is serializable if its
actions do not interleave with actions of other trans-
actions. Formally, transaction T is serializable in ex-
ecution E if any action A such that TS <E A <E TC

is either executed by the same thread that executed
T or is a non-transactional action. An execution is
serializable if all transactions in that execution are se-
rializable. An atomic execution is serializable but the
reverse is not true.

We say that a semantics provides atomicity for a given
program if any execution of that program legal under the
semantics is either atomic or is equivalent to an atomic ex-
ecution. Similarly, a semantics provides serializability for a
given program if any execution of that program legal un-
der the semantics is either serializable or is equivalent to a
serializable execution.

Our framework allows us to give precise definitions to
many popular TM semantics. For example, we can describe
strong atomicity as a semantics that contains only atomic
executions (and, consequently, guarantees atomicity for all
programs) and SLA as a semantics that contains only serial-
izable executions (and thus guarantees serializability for all
programs). Note that these semantics differ not only by the
set of their legal executions but also by their definition of
the race-freedom. Figure 1, for example, shows a program
that is racy under SLA but is race-free under strong atom-
icity. In this program a data race occurs only if the write to
x interleaves with the actions of the transaction in Thread
1 that reads x. Under strong atomicity such interleaving is
impossible, so this program is race-free.

Note that our framework is designed to reason about prop-
erties of TM semantics rather than implementations. Our
work is thus complementary to the work on correctness cri-
teria for TM implementations [15] that already assumes a
particular TM semantics (namely, strong atomicity).

3. LOCK-BASED SEMANTICS
Many proposed TM semantics express the behavior of

transactions via an analogy with locks. Under Single Lock
Atomicity (SLA) [20], for example, transactions execute as
if protected by a single program-wide lock. Under Disjoint
Lock Atomicity (DLA) [26], transactions execute as if pro-
tected by some minimal set of locks such that two trans-
actions share a common lock if and only if they conflict.
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This definition matches an intuition that transactions with-
out conflicting accesses to shared memory can be executed
in parallel. Weaker memory models with more complex lock
analogies have also been proposed [26]. At the same time,
lock-based semantics have been criticized for reducing the
transactional semantics to that of lock-based synchroniza-
tion [22, 32].

We believe that the problem lies with lock-based formu-
lations of the semantics rather than semantics themselves.
Both SLA and DLA capture useful properties of transac-
tional executions that can and should be expressed without
referring to locks.

In this section, we use our framework to give precise def-
initions to SLA and DLA and to analyze their properties.
While past work has discussed the relative benefits of SLA
and DLA in the context of Java [19, 26], in this paper, we
compare SLA and DLA in the context of C++, which defines
semantics only for race-free programs. We do not consider
the semantics weaker than DLA (e.g., ALA and ELA [26])
because these semantics have been proposed solely to elim-
inate STM implementation constraints specific to Java. To
avoid confusion, we keep the original names of SLA and DLA
even though our definitions no longer refer to locks.

In our framework, SLA can be formulated simply as a se-
mantics that contains only serializable executions. This def-
inition captures the essence of SLA — if transactions were
protected by the same lock their actions would not interleave
in the total order of actions used to explain the program be-
havior. DLA imposes weaker restrictions: Conflicting trans-
actions appear to execute serially with respect to each other,
and the actions of non-conflicting transactions are allowed to
interleave. More formally, DLA can be defined as a seman-
tics that contains all executions E that satisfy the following
property: if A and B are conflicting transactional actions in
E such that A executes within a transaction T , B executes
within a transaction T ′, and A <E B, then TC <E T ′

S .
Note, that DLA is a weaker semantics than SLA; that is,
any execution legal under SLA is also legal under DLA but
the reverse is not true.

For C++ programs without nested synchronization, choos-
ing between SLA and DLA is not necessary because in this
domain these semantics are equivalent. Moreover, both SLA
and DLA provide atomicity for race-free programs without
nested synchronization. The following theorems formalize
these claims.

Theorem 1. DLA provides atomicity for race-free pro-
grams without nested synchronization.

Proof. Consider a program without nested synchroniza-
tion that is race-free under DLA. Let E be a non-atomic
execution of this program that is legal under DLA. Because
the program is race-free under DLA, the execution E is race-
free. Let k be the length of the longest atomic prefix in E.
That is, Ak+1 is the first action that interleaves with some
transaction T . We shall show that E has an equivalent exe-
cution with an atomic prefix of length k + 1. It then follows
by induction that E also has a full equivalent atomic execu-
tion.

Let E = (P, TP , Ak+1, S), where P and S are some se-
quences of actions (possibly empty) and TP is the sequence
of actions in the transaction T that execute before Ak+1.
Consider execution E′ = (P, Ak+1, TP , S) that permutes
Ak+1 and TP . Execution E′ has an atomic prefix of length

k + 1. By Lemma 1 it is also equivalent to execution E be-
cause in programs without nested synchronization TP can-
not contain synchronization actions.

Theorem 2. SLA and DLA are equivalent for C++ pro-
grams without nested synchronization.

Proof. The proof directly follows from Claims 2.1- 2.4
listed below and from the definitions of program equivalence
and program race-freedom.

Claim 2.1. Any execution legal under SLA is legal under
DLA.

Proof. This follows directly from the definitions of SLA
and DLA.

Claim 2.2. For programs without nested synchronization
that are race-free under DLA, any execution legal under DLA
is either legal under SLA or is equivalent to an execution le-
gal under SLA.

Proof. This follows from Theorem 1, as any atomic ex-
ecution is legal under SLA.

Claim 2.3. A program that is race-free under DLA is
race-free under SLA.

Proof. Consider a program that is race-free under DLA.
Any execution of this program that is legal under SLA is also
legal under DLA (Claim 2.1) and thus is race-free. Conse-
quently, the program is race-free under SLA.

Claim 2.4. A program that contains no nested synchro-
nization and is race-free under SLA is race-free under DLA.

Proof. We prove this property by contradiction. As-
sume that there exists a program that contains no nested
synchronization, is race-free under SLA and is not race-free
under DLA. This program should have a racy execution E
that is legal under DLA and is not legal under SLA. Let
Ak and Ak+1 be the first actions in E that form a data
race. Let P be the prefix of E of length k − 1. That is,
E = (P, Ak, Ak+1, S). Prefix P is race-free as Ak and Ak+1

are the first actions that form a data race. By Claim 2.2 P
has an equivalent prefix P ′ that is legal under SLA. Let us
add actions Ak and Ak+1 to P ′. Since Ak or Ak+1 are con-
flicting data accesses, neither is a transaction start action.
Thus, the resulting partial execution E′

P = (P ′, Ak, Ak+1) is
legal under SLA. Let us complete E′

P in any way allowed by
SLA. We now constructed a racy execution that is legal un-
der SLA. This contradicts our assumption that the program
is race-free under SLA.

Theorem 3. SLA provides atomicity for race-free pro-
grams without nested synchronization.

Proof. This theorem follows directly from Claim 2.1 and
Theorem 1.

For race-free programs with nested synchronization, nei-
ther SLA nor DLA guarantee atomicity (as the example in
Figure 2 demonstrates). Furthermore, in the presence of
nested synchronization, DLA is strictly weaker than SLA
and does not guarantee even serializability. Figure 3 shows
an example of a race-free program with nested synchroniza-
tion that may behave differently under SLA and DLA. 5

5This figure shows a modified version of publication by
empty transaction from [26].
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Initially atomic<int> data = 42,
atomic<bool> ready = false,

int val = 0, int * p, int * q;

Thread 1 Thread 2
1: atomic {
2: tmp = data;
3: data = 1;
4: atomic { *p = 1;}
5: ready = true;
6: if(ready) {
7: val = tmp;
8: *q = 2;
9: }
10: }

Can val == 42?

Figure 3: DLA does not guarantee serializability in
race-free programs.

This program is race-free under both SLA and DLA seman-
tics because it performs all non-transactional accesses using
C++ atomic variables. Thread 2 can see val == 42 only if
the transaction in Thread 1 interleaves with the execution
of the transaction in Thread 2. Under SLA, transactions
cannot interleave, so the result val == 42 is illegal. Under
DLA, the interleaving shown in Figure 3 is legal if the trans-
actions in Threads 1 and 2 do not conflict. This depends on
whether pointers p and q alias, which in the general case
is undecidable. DLA thus not only allows non-serializable
executions, but also prevents clear reasoning about program
behavior.

DLA also does not provide significant advantages over
SLA from the point of view of the implementation. In the
absence of nested synchronization, DLA cannot provide any
advantages over SLA because in this case these semantics
are equivalent. In the presence of nested synchronization,
the advantages of DLA are marginal because both SLA and
DLA effectively require serialization of transactions on a lock
release or synchronization variable write operation. (Ap-
pendix A explains this point in more detail.) We thus be-
lieve that DLA is not a practical choice for TM semantics
in the context of C++.

4. RACE-FREE ATOMICITY
Atomicity is a fundamental property that helps program-

mers reason about concurrent programs. In general, locks
do not guarantee atomicity. However, previous work [13]
presented convincing evidence that most of the time pro-
grammers use locks to express atomicity rather than mu-
tual exclusion. Several researchers have recently focused on
finding atomicity violations due to incorrect use of locks in
programs [21, 14]. TM alleviates this problem by providing
a high-level abstraction that allows programmers to express
the intent of atomicity explicitly.

Strong atomicity guarantees atomicity for all programs,
(including programs considered racy by SLA) but is not
practical for C++. Implementing strong atomicity in soft-
ware introduces overheads such as software instrumentation
on non-transactional code [30]. This violates the “pay-as-
you-go” principle of not imposing overhead on code that
does not use transactions, an important practical considera-
tion for C++. Although optimization techniques for strong

atomicity have been demonstrated for Java [30, 29, 7] and
C# [2], where readily available type information and dy-
namic compilation or patching allow for aggressive elimi-
nation of software instrumentation, the viability of strong
atomicity has yet to be demonstrated for C++. Hardware
support for strong atomicity has been proposed [27, 3], but
such hardware is not available. We believe that strong atom-
icity is likely to remain unattainable for C++.

Providing strong atomicity for C++ is not only imprac-
tical but is also overkill because it prohibits behaviors than
the standard C++ memory model would seem to allow (i.e.,
programs that would appear racy under lock-based seman-
tics in C++ and, consequently, would be allowed arbitrary
behaviors, would be considered race-free under strong atom-
icity). On the other hand, weaker semantics such as SLA
do not provide atomicity for race-free programs. SLA does
guarantee atomicity for race-free programs without nested
synchronization, but we do not consider prohibiting locks
inside transactions a good design choice. Such a restriction
would prevent reuse or incremental refactoring of existing
lock-based code and is likely to slow down the adoption of
TM.

Another option is to treat conflicts between transactional
and non-transactional synchronization actions as data races,
as implied by the work on TM semantics that does not
provide special treatment for synchronization variables and
locks [1, 10]. We consider this design choice also unaccept-
able, as it allows for a possibility of creating a data race by
adding transactions to a correctly synchronized program.
For example, under such an interpretation of a data race,
the program in Figure 2 is racy and may have an arbitrary
behavior, even though without a transaction in Thread 1
this program is race-free.

We thus propose Race-Free Atomicity (RFA), a new se-
mantics that guarantees atomicity for all race-free programs
without imposing unnecessary restrictions on STM imple-
mentations. RFA is stronger than SLA because it provides
atomicity for race-free programs even in presence of nested
synchronization. It is weaker than strong atomicity in that
it accepts fewer executions as race-free but, unlike strong
atomicity, can be implemented in practice. Recent work [34]
has suggested that TM implementations could provide atom-
icity in the presence of locks by holding the locks acquired
inside a transaction until that transaction either commits or
aborts. RFA captures this intuition by prohibiting transac-
tions from interleaving with conflicting synchronization ac-
tions of other threads. More formally, we define RFA as a
semantics that contains all executions E that satisfy the fol-
lowing property: for any transaction T and action A such
that TS <E A <E TC , A is executed by the same thread
that executed T (thread(A) == thread(T )), or is a non-
transactional data access, or is a non-transactional synchro-
nization action that does not conflict with T .

The following theorems state the properties of RFA and
its relationship to SLA.

Theorem 4. RFA provides atomicity for race-free pro-
grams.

Proof. We shall show that any race-free execution that is
legal under RFA is either atomic or has an equivalent atomic
execution. Consider a non-atomic race-free execution E that
is legal under RFA. Let k be the length of the longest atomic
prefix in E. That is, Ak+1 is the first action that interleaves
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with some transaction T . We shall show that E has an
equivalent execution with an atomic prefix of length k + 1.
It then follows by induction that E also has a full equivalent
atomic execution.

Let E = (P, TP , Ak+1, S), where P and S are some se-
quences of actions (possibly empty) and TP is the sequence
of actions in T that execute before Ak+1. Since RFA dis-
allows interleaving of transactions with conflicting synchro-
nization actions, Ak+1 is not a synchronization action con-
flicting with TP . We thus can apply Lemma 1 to obtain
an equivalent execution E′ = (P, Ak+1, TP , S) that has an
atomic prefix of length k + 1.

Theorem 5. RFA and SLA are equivalent for C++ pro-
grams without nested synchronization.

Proof. The proof of this theorem directly follows from
Claims 5.1- 5.4 listed below and the definitions of program
equivalence and program race-freedom.

Claim 5.1. Any execution legal under RFA is legal under
SLA.

Proof. This follows directly from the definitions of RFA
and SLA.

Claim 5.2. For programs without nested synchronization
that are race-free under SLA, any execution legal under SLA
is either legal under RFA or is equivalent to an execution
legal under RFA.

Proof. This follows from Theorem 3, as any atomic ex-
ecution is legal under SLA.

Claim 5.3. A program that is race-free under SLA is race-
free under RFA.

Proof. Consider a program that is race-free under SLA.
Any execution of this program that is legal under RFA is
also legal under SLA (Claim 5.1) and thus is race-free. Con-
sequently, the program is race-free under RFA.

Claim 5.4. A program that contains no nested synchro-
nization and is race-free under RFA is race-free under SLA.

Proof. The proof is similar to that of Claim 2.4. As-
sume that there exists a program that contains no nested
synchronization, is race-free under RFA but is not race-free
under SLA. Let E be a racy execution of this program that
is legal under SLA and is not legal under RFA. Let E be
of form E = (P, Ak, Ak+1, S), where Ak and Ak+1 are the
first actions that form a data race. Prefix P is race-free and
by Claim 5.2 has an equivalent prefix P ′ that is legal under
RFA. Let us add actions Ak and Ak+1 to the prefix P ′. Since
Ak and Ak+1 are conflicting data accesses, neither of them
can be a synchronization action or a transaction start action.
Thus the resulting partial execution E′

P = (P ′, Ak, Ak+1) is
also legal under RFA. Completing this prefix in any way al-
lowed by RFA constructs a racy execution that is legal under
RFA, and, thus, proves that our assumption was invalid.

Although RFA is weaker than strong atomicity, it still
cannot be practically implemented in an STM when trans-
actions contain nested synchronization hidden inside legacy
code. Section 6 describes our proposal for TM semantics
that deals with this limitation.

Initially int x = 0
Thread 1 Thread 2

1: atomic {
2: x++;
3: t = x;
4: abort;
5: }

Figure 4: Is this program race-free?

Initially int x = 0
Thread 1 Thread 2

1: atomic {
2: t1 = x;
3: x = 1;
4: t2 = x;
5: if (t1 != t2)
5: abort;
6: }

Figure 5: Can this transaction abort?

5. USER-LEVEL ABORT
Many TM systems provide some variant of a user-level

abort construct such as abort or retry. Intuitively, aborted
transactions should behave as if they never executed. We
considered interpreting such an intuition literally and as-
signing user-level abort an invisible abort semantics, that
is, modeling user-level abort in our framework by excluding
the actions of aborted transactions from program executions.
Such definition of user-level abort, however, would preclude
the actions of aborted transactions from participating in de-
termination of program race-freedom, and would require TM
implementations to provide strong atomicity for programs
that may contain user-level abort.

Figure 4 shows a simple example that illustrates the con-
sequences of invisible abort semantics. Under strong atom-
icity, this program clearly is race-free, but under RFA and
weaker semantics, this program appears to have a data race
on x. Under invisible abort semantics, the write to x in
Thread 1’s aborted transaction is not a part of any program
execution, and thus cannot form a data race with the read
of x, which implies this program is race-free under all our
semantics. Moreover, it implies the result t == 1 is illegal,
because the write that could produce this result is not a part
of a program execution. Invisible abort semantics thus pre-
cludes in-place update STM implementations that do not
provide strong atomicity, as such implementations cannot
prevent non-transactional reads from observing results of
aborted transactions.

The example in Figure 5 shows that invisible abort also
has consequences for write-buffering STMs. It also illus-
trates how invisible abort complicates reasoning about pro-
gram behavior. Under invisible abort semantics, the result
t1 != t2 is illegal because it leads to circular reasoning. As-
sume that t1 != t2. This can happen only if this program
has a data race on x. In this case, Thread 1’s transaction
aborts, so the reads of x are not a part of a program execu-
tion, and they could not cause a data race. This program
is therefore race-free, but this implies that t1 != t2 is im-
possible. The only way to avoid this circular argument is
to prohibit an execution where t1 != t2, that is, effectively
guarantee strong atomicity for Thread 1’s transaction.
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Requiring TM implementations to provide strong atom-
icity for programs with user-level abort is impractical even
if user-level abort is rare. Without whole-program analysis,
it is not possible to statically determine if non-transactional
code may be executed concurrently with a transaction con-
taining user-level abort. Consequently, such a requirement
would cause any software TM implementation that does not
support whole-program analysis to impose the overhead of
software instrumentation on all non-transactional code.

We thus believe that user-level abort should instead be
given visible abort semantics, where aborted transactions are
part of the program execution and contribute to determina-
tion of the program race-freedom. In this case, user-level
abort is simply an undo action that rolls back the side ef-
fects of the aborted transaction. That is, it restores the state
of the memory locations written by the transaction to the
values they had at the time the transaction wrote them and
releases the locks acquired by the transaction. Under such
an interpretation of user-level abort, the programs in Fig-
ures 4 and 5 are racy (under RFA and weaker models) and,
thus, can be handled in a straightforward way by an STM.
Note that for atomic executions of race-free programs, such
restricted interpretation of user-level abort still guarantees
that an aborted transaction behaves as if it never executed,
as the side effects of a transaction are rolled back before they
can be observed by an action of another thread. 6

6. OUR PROPOSAL FOR C++ TM SEMAN-
TICS AND LANGUAGE CONSTRUCTS

By itself, neither SLA nor RFA is a perfect candidate
for C++ TM semantics. SLA does not guarantee atom-
icity for all race-free programs. RFA guarantees atomicity
but cannot be practically implemented without restricting
what actions can be executed transactionally. In particu-
lar, STM implementations cannot practically provide RFA
in the presence of nested synchronization hidden in legacy
code. We therefore make a radical departure from the previ-
ous proposals for C++ language-level constructs [9, 28] and
propose a dual TM semantics with two language-level con-
structs: atomic statements and critical statements (which
we denote using the tm_critical keyword). Furthermore,
we define these constructs so that they interoperate.

In race-free programs, atomic statements appear to exe-
cute as single indivisible actions; that is, they behave accord-
ing to RFA semantics. Atomic statements, however, can-
not contain arbitrary actions, such as calls to legacy code.
Critical statements appear to execute in some serial order
with respect to other critical and atomic statements; that
is, they behave according to SLA semantics. Critical state-
ments may contain arbitrary code. However, critical state-
ments that contain nested synchronization and I/O might
appear to execute non-atomically. More formally, we define
our dual semantics as a semantics that contains all serializ-
able executions E such that for any transaction T in E that
corresponds to an atomic statement, the actions of T do not
interleave with conflicting synchronization actions of other
threads in the execution order of E.

The operations inside an atomic or critical statement can
be rolled back explicitly via a user-level abort statement. An
abort statement undoes the writes executed by the atomic

6We leave to future work a more rigorous treatment of abort
semantics and the proof of this statement.

Initially atomic<int> v = 0, int x = 0
Thread 1 Thread 2

1: tm_critical {
2: x = 1;
3: v = 1;
4: if (v == 1) {
5: t1 = x;
6: tm_abort;
7: }
8: t2 = x;
9: }

Can t1 != t2?

Figure 6: User abort and irrevocable actions.

or critical statement that statically encloses it and transfers
control to the statement immediately following that state-
ment. In particular, it restores the state of the memory lo-
cations written by the transaction to the values they had at
the point the transaction initially wrote to those locations.

Some actions cannot be undone via user-level abort. Ex-
amples of such actions include legacy code, non-transactional
I/O and, in general, any action that exposes the internal
state of a transaction to another thread or the external en-
vironment. Figure 6 illustrates the last scenario. In this
example, the critical statement in Thread 1 publishes the
value in x by setting a value in the synchronization variable
v. Thread 2 then observes this value in v (synchronizing
with Thread 1) and then reads the value in x. If Thread 1
now aborts, it will undo its writes to v and x, and create a
race with the second read of x in Thread 2. Moreover, the
program is left in an inconsistent state because Thread 2 ob-
served a speculatively written value from Thread 1. Clearly
Thread 1 should not be allowed to abort after it violates
atomicity.

We call the actions that cannot be undone via user-level
abort irrevocable actions. In our semantics, atomic state-
ments cannot contain irrevocable actions. They thus have
no restrictions on placement of user-level abort. Critical
statements may contain irrevocable actions. However, an
attempt to execute an abort statement after executing an
irrevocable action will result in in a run-time failure. (An al-
ternative design choice is to simply prohibit user-level abort
in critical statements. However, this would also prevent pro-
grammers from aborting critical statements that dynami-
cally executed no irrevocable actions.)

Our design leaves some room for the choice of unsafe ac-
tions, that is, the actions that should be prohibited inside
atomic statements. Conceptually, an action is unsafe if it is
irrevocable or cannot be practically implemented to execute
atomically. Calls to legacy libraries are obviously unsafe,
as they are both irrevocable and cannot be executed atomi-
cally in an STM. We believe that operations on C++ atomic
variables should also be declared unsafe. Executing these
operations atomically would require software instrumenta-
tion on non-transactional accesses to atomic variables. This
might be unacceptable given that C++ atomic variables are
intended as a mechanism for implementing concurrent al-
gorithms that is more efficient than locks. 7 In an ultimate
push for simplicity, we could also prohibit locks inside atomic

7The examples in this paper use C++ atomic variables for
the sake of brevity. The same concepts can be illustrated by
using locks instead of C++ atomics.
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statements. This would allow one to describe the behavior
of both critical and atomic statements by SLA semantics,
as without nested synchronization RFA and SLA are equiv-
alent. Such restriction, however, would limit composition of
locks and transactions, and is unnecessary, as STM imple-
mentations can provide atomicity for locks [34].

There exist several options for enforcing safety restrictions
on actions of atomic statements. First, we can prohibit un-
safe code within atomic statements statically via rules that
the compiler can check automatically: an atomic statement
cannot contain in its lexical scope any unsafe code or any
calls to functions that may contain unsafe code. The latter
part of this rule requires interprocedural analysis, which we
do not believe is a reasonable requirement for a C++ lan-
guage construct. Alternatively, we can prohibit unsafe code
within atomic statements dynamically. In this approach, an
attempt to execute unsafe code inside an atomic statement
would cause the atomic statement to abort and throw a run-
time exception. This still guarantees atomicity but increases
the burden on the programmer to be careful in avoiding un-
safe code inside atomic statements. The third, and the most
practical option, is to introduce a function annotation that
explicitly marks a function as safe (e.g., tm_safe). The com-
piler then statically enforces that neither atomic statements
nor tm_safe functions contain calls to functions that are
not tm_safe. To allow indirect function calls inside atomic
statements and tm_safe functions, the tm_safe annotation
can also be used as a qualifier on a function pointer type.

7. CONCLUSIONS
Integrating transactional memory into mainstream pro-

gramming languages such as C++ requires precise definition
of its semantics in the context of these languages. These se-
mantics should provide the essential database transaction
properties that have for decades proven themselves useful in
the database world. At the same time, these semantics must
consider the unique interactions that arise from integrating
transactions into an existing programming language, such as
the interaction between transactions and existing synchro-
nization primitives, irrevocable actions and legacy code.

In this paper we have addressed the semantics of TM in
the context of the C++ language. We have given a pre-
cise formulation of several TM semantics and related them
to the properties of atomicity and serializability. We have
shown how several of these semantics are equivalent for C++
programs that perform no synchronization inside transac-
tions. We have introduced a new semantics called RFA
that guarantees atomicity for programs with no nested syn-
chronization. Finally, we have proposed new C++ language
constructs that allow the programmer to specify explicitly
whether transactions should guarantee atomicity. With the
language constructs and semantics presented in this paper,
we now have a solid foundation for introducing first-class
transactional memory constructs into C++.
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APPENDIX
A. SLA VS. DLA

In Section 3 we claimed that DLA provides only marginal
advantages over SLA from the implementation point of view.
We substantiate this claim using the example in Figure 7.
In this program, Thread 2 privatizes data by setting flag
shared to zero and hands off the data to Thread 3 by set-
ting atomic variable v to 1. Thread 1 modifies data only if
it is shared. The example is somewhat contrived - Thread 2
first hands off data to Thread 3 and then makes it private.
However, technically it is correct under either SLA or DLA.
Transactions in Threads 1 and 2 conflict so they cannot in-
terleave even under DLA. Thread 3 reads data only if it ex-
ecutes after the start of Thread 2’s transaction (otherwise,
v == 0 and data is not read). Thread 1’s transaction writes
data only if it executes before the transaction in Thread 2.

Initially atomic<int> v == 0, int shared == 1
int data == 0

Thread 1 Thread 2 Thread 3
1: atomic {
2: v = 1;
3: if (v == 1) {
4: t1 = data;
5: atomic {
6: if (shared)
7: data = 42;
8: }
9: t2 = data;
10: }
11: shared = 0;
12: }

Can t1 != t2?

Figure 7: Transitive privatization via nested syn-
chronization

Consequently, this program is race-free and the result t1 !=

t2 is impossible. Thread 3 should either see all effects of the
transaction in Thread 1 or none.

The read of v in Thread 3 effectively acts as an atomicity
break point for Thread 2’s transaction. More precisely, we
say that a non-transactional lock acquire (or synchronization
variable read) is atomicity break point for transaction T if
it acquires a lock released by T (or reads the value written
in T ) and executes before the commit of T . Under either
SLA or DLA, any transaction T ′ that conflicts with T and
did not complete before T ’s atomicity break point P should
appear to execute after T . (It cannot appear to execute
before T because in that case its side effects should have
been visible to non-transactional code that executes after
P .) From the implementation point of view, this means that
T ′ cannot commit between T ’s atomicity violation point P
and T ’s linearization point L. (For write-buffering STMs,
linearization point is validation point; for in-place update
STMs it is commit point.) In in-place update STMs, T ′

also cannot abort between P and L, so it cannot execute
between P and L at all. (If T ′ aborts between P and L
the effects of its speculative execution might be visible to
non-transactional code after P .)

Under DLA T ′ can commit between P and L if it does
not conflict with T . However, in general it is impossible
to determine if two transactions conflict till both of them
have completed. Thus, DLA offers no practical advantages
over SLA with respect to handling nested lock release oper-
ations and synchronization variable reads (except in limited
situations, such as when T’ is empty).

DLA gives more flexibility to STM implementations with
respect to nested lock acquire and synchronization variable
reads. For example it allows the execution in Figure 3 that is
illegal under SLA. However, we believe this to be a marginal
advantage as locks are more frequent than synchronization
variables and lock acquire is unlikely to occur in a transac-
tion without an accompanying lock release.
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