
Generic Workers – Towards Unified Distributed

and Parallel JavaScript Programming Model

Adam Welc Richard L. Hudson Tatiana Shpeisman Ali-Reza Adl-Tabatabai

Intel Labs

{adam.welc,rick.hudson,tatiana.shpeisman,ali-reza.adl-tabatabai}@intel.com

Abstract

In this paper we introduce generic workers, a programming

model for JavaScript unifying parallel and distributed com-

puting paradigms, that allows the same application to run

well on a variety of clients while utilizing the available re-

sources in the best possible way. We describe the design and

implementation of an infrastructure supporting our program-

ming model and evaluate performance of selected applica-

tions running on devices with differing computational capa-

bilities.

1. Introduction

Recently it has become quite clear that the era of perfor-

mance improvements due to steadily increasing CPU clock

speeds is over and, consequently, programmers must turn

to distribution and/or parallelism to further improve perfor-

mance of their applications. Surprisingly, despite growing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

acceptance of the web browser as the dominant application

delivery system and JavaScript as the language to imple-

ment complicated and often resource-demanding web appli-

cations, support for distributed and parallel programming in

JavaScript remains limited.

Web workers offer one way to exploit parallelism in

JavaScript. Its draft specification [6] is part of the HTML5

standards [2] effort and while it was designed as a mecha-

nism to improve latency, its implementations in some of the

existing web browsers (e.g. Google Chrome) can be used to

implement scalable parallel applications. By design, how-

ever, web workers lack any support for computation dis-

tribution. Consequently, todays programmers must either

rely on web workers for local parallelism or write appli-

cations explicitly tapping to the remote resources available

in the cloud. As a result of the lack of uniformity between

these two programming styles, a parallel application that

runs well on a high-performance multi-core machine might

not run well on a less powerful hand held machine. At the

same time, by relying only on remote resources todays web

programmers may forgo a potential benefit of parallelism

available on a client platform.

In this paper we propose generic workers, a programming

model generalizing web workers to allow workers to exe-

cute not only locally in a web browser but also remotely on

a compute server (described in more detail in Section 2.1).

Generic workers combine benefits of local parallel execu-

tion with those of the remote distributed execution. As the

programming model is the same for both local and remote

workers, the same code can be used for a generic worker re-

gardless of where it ends up being executed. This way, the

best execution mode for a given application can be chosen

based on the current resource availability with virtually no

changes to its source code. We also describe an implementa-

tion of generic workers support and present its performance

evaluation.

2. Unified Programming Model

In JavaScript, communication between different parallel or

distributed entities is realized via message passing. How-

ever, message passing is handled differently, depending on

whether communication happens between the web workers

(parallel setting) or between JavaScript code and a remote

server (distributed setting).

Conceptually, web workers are threads of execution

that communicate exclusively by exchanging messages.

A message can be sent to a web worker by invoking the

postMessage method on this worker’s instance. On the re-

ceiving side, a worker defines an onmessage handler that

gets invoked by the browser to notify this worker of the mes-

sage received event. The receiving worker, as part of execut-

ing the message event handler, can send response messages

to the original sender also via the postMessage function.

JavaScript’s mechanism for communicating with remote

servers (typically HTTP servers) is quite different, as server

**** CREATION AND INTERACTION ****

GenericWorker(worker_source, handler, address, port);

GenericWorker.post(data);

GenericWorker.destroy();

**** PROGRAMMING ****

onget(data) { ... }

post(data);

Figure 1. Generic workers API

communication is supported via HTTP protocol [5]. An

XMLHttpRequest object [1] encapsulating an HTTP request

(e.g. GET or POST) must be created before a request mes-

sage can be sent to the HTTP server. The HTTP server must

be configured appropriately to understand incoming request

messages and send HTTP response messages that are then

passed to the original sender via event notification.

Our unified programming model, generic workers, is con-

sistent with the spirit of JavaScript’s in that it supports mes-

sage delivery via asynchronous notifications, but removes

the source of the dichotomy described above to facilitate

code re-use and in doing so allows application to adapt to

varying resource availability.

2.1 Generic workers

The main idea behind the generic workers is to allow the

same application programming interface (API) to be used

for programming both parallel and distributed applications.

During its creation, a generic worker is specified to be either

local or remote. Except for this, the same generic worker

code can be executed without any changes on any platform

- locally inside a browser or remotely on a server, which

we call a compute server. A compute server is essentially

an execution engine for web workers running on a remote

function wh(data) {

PRINT(data.str); this.destroy();

}

function local_main() {

var w = GenericWorker("ew.js", wh, null, null);

w.post({"str":"STRING TO BE ECHOED"});

}

function remote_main() {

var w = GenericWorker("ew.js", wh, "addr.net", P);

w.post({"str":"STRING TO BE ECHOED"});

}

function main() {

local_main(); remote_main();

}

Figure 2. Echo application code

machine, that supports execution of both standard JavaScript

and the API specific to generic workers.

The generic workers API, presented in Figure 1, is di-

vided into two components, one defining how to create and

interact with the generic workers and the other defining how

to program a generic worker itself.

The first API component defines a constructor for cre-

ating a generic worker instance. An address and a listen-

ing port of a compute server must be specified if a generic

worker is to be instantiated remotely. If both of these ar-

guments are null then a local worker is created instead.

Though currently not implemented, in the future we envision

a resource discovery mechanism that will instantiate work-

ers automatically at appropriate locations depending on re-

source availability. Even without this functionality, however,

programmers using our API may offer the end-users the ben-

efit of semi-automatic adjustment to the current execution

environment. For example, in an image processing applica-

tion, a click of a button may allow the end-user to decide

if the image should be processed locally or remotely. Other

generic worker constructor parameters include the source

used to instantiate the worker and a handler function to be

importScripts("generic_workers_api.js");

function onget(data) {

post(data);

}

Figure 3. Echo worker code (ew.js)

executed when a message from this worker arrives and needs

to be processed. Interaction with a generic worker’s instance

is possible via the post function used to send a message to a

generic worker and via the destroy function used to destroy

a generic worker’s instance (local or remote).

The main element of the second API component is a han-

dler function onget that must be defined for every generic

worker. Conceptually, a newly constructed generic worker is

idle until a message arrives and the runtime invokes the han-

dler function. A generic worker’s handler function typically

does some computation that might use the post function to

send a message back to the sender. Upon completion of the

handler function the generic work returns to the idle loop

waiting for another message.

In Figure 2 and in Figure 3 we present a simple JavaScript

“echo” program that uses the generic workers API (PRINT

function is used by the browser to print to the screen, P rep-

resents compute server’s port number, and we assume that

file “ew.js” is available both to the browser and the com-

pute server). After both the local worker and the remote

worker are instantiated in the main function, using the same

source code (Figure 3), they wait for arrival of a message

just to pass it back to the sender. Please note that data mar-

shalling/unmarshalling happens automatically, regardless of

whether interacting with a local worker or a remote worker.

3. Implementation

Our implementation consists of two major components - the

local component supported within the browser and the re-

mote component supported by the compute server. The lo-

cal component is responsible for creating and interacting

with both local (parallel) generic workers and remote (dis-

tributed) generic workers, but executes the computation of

only local workers. It is the remote component, a compute

server, that is responsible for executing computations of re-

mote generic workers.

The implementation of the local component utilizes

custom-built NPAPI (Netscape Plugin API [7]) plugin to

provide some necessary native support that was missing

from the browsers at the time we were building our in-

frastructure. The implementation of the remote compo-

nent is coded entirely in JavaScript and executed on top

of v8cgi [10], a publicly available wrapper around Google’s

V8 JavaScript execution engine [9] providing a standalone

JavaScript execution environment. Due to space considera-

tions, we provide only a sketch of the implementation.

We implemented communication between the local com-

ponent and the remote component using “raw” TCP pro-

tocol [8], with data being marshalled/unmarshalled under-

the-hood using JSON [4]. We used the NPAPI plugin to ac-

cess TCP sockets as the implementation of WebSocket-s [3]

was not available at the time we were building our infras-

tructure 1. An infrastructure supporting execution of local

generic workers is mapped to web workers, but with an in-

teresting caveat related to the fact that workers can create

other sub-workers. If a local worker attempts to create a re-

1 It is also possible to build an JavaScript-only implementation that wraps
messages in the XMLHttpRequest objects and does not access sockets
directly. As we discovered, however, such implementation is very fragile
due to security-related workarounds required to support communication
with multiple compute servers.

mote sub-worker, things get more complicated as the local

worker 2 does not have direct access to any data defined in

the main program or in the main browser window. As a re-

sult, a local worker cannot access the plugin object, which

means that it also cannot directly create a remote sub-worker

or interact with it. We overcome this obstacle by introducing

a level of indirection. Conceptually, local workers form a

tree hierarchy with the main browser thread at the root and

local workers as the tree nodes. A local worker wishing to

create a remote sub-worker or to interact with it passes spe-

cial control messages up the tree until they reach the root

(which in turn can directly access the plugin).

The main part of the remote component (i.e. compute

server) is a loop whose sole purpose is to receive incoming

messages. The first message received by the compute server

on the server TCP socket 3 carries a request from a client (ei-

ther a browser of another compute server) to create a remote

worker on this server, and includes the name of the source

file to be used for worker instantiation. Once this message is

received, the content of the appropriate JavaScript source file

is retrieved and evaluated (using JavaScript eval function)

in the global scope, thus becoming accessible to the compute

server’s code (e.g. for the compute server to be able to exe-

cute a message handler of the generic worker being created).

4. Evaluation

We evaluate the performance of our system on an in-

house parallelized RayTrace benchmark from Google’s V8

benchmark suite, rendering images of three different sizes

(in pixels): 100x100, 200x200 and 500x500. Our experi-

mental setup consists of a local platform to execute local

2 More precisely, it is a local generic worker mapped to a web worker.
3 Direct access to TCP sockets is provided by v8cgi’s API.

0

2

4

6

8

10

12

1 worker 2 workers 4 workers 8 workers 16 workers

100x100 200x200 500x500

Figure 4. Remote speedup

part of the computation (in the Google Chrome browser

v.4.1.249.1042 4) and a remote platform to execute remote

part of the computation (on a compute server or multiple

compute servers running on top of v8cgi using V8 engine

v.1.3.16). We evaluate two different local platforms, a single-

core Atom-based netbook with 1GB of RAM running Win-

dows XP at 1.66Ghz and a 24-core Dunnington-based server

machine with 16GB of RAM running Windows Server 2003

at 2.66Ghz. A twin to the latter machine, running RedHat

Enterprise Linux 4 on top of 2.6.9-42.ELsmp kernel, is used

for remote execution of compute servers in all cases.

As we layered local implementation of generic workers

on top of web workers, and Chrome does provide a scal-

able implementation of web workers, our workload imple-

mented using parallel generic workers scaled well when ex-

ecuted on a Dunnington-based machine. Without any exten-

sive tuning, we have achieved up to over 7x speedup when

using 16 workers, which is the maximum number of work-

ers supported by Chrome. A more interesting question was

whether the application can benefit from computation of-

floading, despite relatively high cost of communication (we

used VPN-ed wireless connection with average round-trip

4 It was the fastest web browser (in terms of JavaScript execution) at the
time we performed our experiments.

time of 30ms). As we can see in Figure 4, presenting

speedup of our workload offloaded from the Atom-based

netbook to the Dunnington-based server compared with the

sequential execution time of the same workload on the net-

book, offloading application running on a netbook results in

performance improvement even in the case when the entire

computation is performed by just one remote worker. We can

also observe that the remote configuration scales, as perfor-

mance improves even further as additional remote workers

are added to the mix.

References

[1] World Wide Web Consortium. XMLHttpRequest working

draft, 2009. http://www.w3.org/TR/XMLHttpRequest/.

[2] World Wide Web Consortium. HTML5 working draft, 2010.

http://dev.w3.org/html5/spec/Overview.html.

[3] World Wide Web Consortium. The websocket api, 2010.

http://dev.w3.org/html5/websockets/.

[4] Douglas Crockford. The application/json media

type for javascript object notation (JSON), 2006.

http://tools.ietf.org/html/rfc4627.

[5] Network Working Group. Hypertext transfer protocol –

HTTP/1.1, 1999. http://tools.ietf.org/html/rfc2616.

[6] Web Hypertext Application Technology Working

Group. Web workers draft recommendation, 2010.

http://www.whatwg.org/specs/web-workers/current-work/.

[7] Mozilla. Gecko plugin api reference, 2009.

https://developer.mozilla.org/en/Gecko Plugin API Reference.

[8] Darpa Internet Program. Transmission control protocol, 1981.

http://tools.ietf.org/html/rfc793.

[9] V8 team. V8 JavaScript engine, 2010.

http://code.google.com/p/v8/.

[10] Ondrej Zara. v8cgi, 2010. http://code.google.com/p/v8cgi/.

