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Abstract
This paper presents a software transactional memory sys-
tem that introduces first-class C++ language constructs for
transactional programming. We describe new C++ language
extensions, a production-quality optimizing C++ compiler
that translates and optimizes these extensions, and a high-
performance STM runtime library. The transactional lan-
guage constructs support C++ language features including
classes, inheritance, virtual functions, exception handling,
and templates. The compiler automatically instruments the
program for transactional execution and optimizes TM over-
heads. The runtime library implements multiple execution
modes and implements a novel STM algorithm that sup-
ports both optimistic and pessimistic concurrency control.
The runtime switches a transaction’s execution mode dy-
namically to improve performance and to handle calls to
precompiled functions and I/O libraries. We present exper-
imental results on 8 cores (two quad-core CPUs) running a
set of 20 non-trivial parallel programs. Our measurements
show that our system scales well as the numbers of cores
increases and that our compiler and runtime optimizations
improve scalability.

Categories and Subject Descriptors D.3.3 [PROGRAM-
MING LANGUAGES]: Language Constructs and Features—
Concurrent programming structures

General Terms Design, Languages, Performance

Keywords Transactional memory, C/C++
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1. Introduction
Transactional Memory (TM) has received significant atten-
tion recently as a simpler concurrency control mechanism
compared to locks. Locks have several pitfalls: Coarse-
grained locking doesn’t scale to a large numbers of cores,
while fine-grained locking risks introducing bugs and com-
plicating composition of software modules. By providing
automatic fine-grained concurrency control, TM avoids the
problems associated with locks and allows safe and scalable
composition of software modules.

Recent work has extended various languages with new
block constructs for expressing transactions. Much of this
work has focused on managed languages such as Java [20],
C# [22], Haskell [21], and Caml [39], and on C [46, 3, 35,
15, 28]. Only quite recently have TM language proposals for
C++ started emerging [10]. Needless to say, C and C++ are
important languages because of their prevalence in systems
code and performance-critical applications.

Some prior work has supported transactional program-
ming in C and C++ by providing an API rather than lan-
guage constructs [13, 31, 11, 16]. API approaches have al-
lowed rapid prototyping of STM algorithms and analysis of
their performance. But such APIs do not deliver completely
on the main goal of TM, which is to simplify concurrent
programming. Manually adding calls to TM API functions
imposes a significant burden on the programmer and is error
prone.

In this paper, we present a complete software transac-
tional memory (STM) system that adds first-class language
constructs for transactional programming to C++. The sys-
tem consists of new C++ language extensions, a compiler
that translates and optimizes these extensions, and a high-
performance STM runtime library. Compared to prior work
on C, the new language constructs support C++ language
features such as classes, inheritance, virtual functions, ex-
ception handling, and templates. We also provide constructs
that allow the programmer to create efficient transactional



versions of existing libraries. This paper makes the follow-
ing contributions:

• We introduce new language extensions to support trans-
actional memory in C++. Unlike prior work that focuses
on C, our language extensions support C++ classes, vir-
tual functions, inheritance, templates, and exception han-
dling. The language constructs allow the programmer to
call existing precompiled code inside transactions, in-
cluding code that may perform unrestricted I/O. The sys-
tem also provides constructs for the expert library devel-
oper to develop versions of their libraries optimized for
execution inside transactions. (Section 2)

• We extend an existing, high-performance production
C/C++ compiler to support our new transactional lan-
guage constructs. We describe novel code generation
techniques and compiler optimizations for these new lan-
guage constructs. (Section 3)

• We present a novel STM runtime library that implements
both optimistic and pessimistic concurrency control.
The runtime also implements a serial execution mode
to support calls to legacy binaries and to support unre-
stricted I/O operations inside transactions. The runtime
can switch between these execution modes dynamically
to optimize performance. We present a novel TM library
API that supports this flexible concurrency control model
while allowing compiler optimizations. (Section 4)

• We present a thorough experimental evaluation of our
STM system on a large set of parallel programs ported to
use our language extensions. Our measurements demon-
strate that our system scales well across these programs
and that our optimizations are important for performance.
Our measurements also show that optimistic concurrency
control performs better than pessimistic concurrency
control though our pessimistic concurrency control al-
gorithm performs competitively in many cases. (Section
5)

We have released an earlier version of our system, in-
cluding the compiler and runtime described in this paper
at the Intel WhatIf web site1. Early adopters can download
these tools and experiment with transactional programming
in C++.

2. Transactional C/C++
This section describes our language extensions to support
transactional memory in C++. Prior systems support basic
mechanisms for C [46, 3]. We refine and extend these mech-
anisms to provide first-class language constructs (rather than
compiler pragmas) and to add full support for C++ classes,
virtual functions, inheritance, templates, and exception han-
dling.

1 The URL for the release of our system is http://whatif.intel.com.

2.1 Atomic blocks
The tm atomic statement defines a basic atomic block,
similarly to the atomic construct previously defined in the
literature [2, 22] and introduced as a C language pragma in
[46]:

__tm_atomic {
// block of arbitrary C/C++ statements

}

The TM system executes atomic blocks as transactions
and isolates concurrently executing transactions from each
other with the net effect that all the operations in one trans-
action appear to complete either before or after all the oper-
ations in any other transaction.

Within each atomic block, the compiler instruments each
shared-memory access so that its execution is delegated to
the TM runtime. The TM runtime tracks all transactional ac-
cesses and detects conflicting accesses among concurrently
executing transactions. Two transactions conflict if they both
access the same memory location at the same time and at
least one of them writes to that location. On a potential con-
flict, the TM runtime transparently rolls back the side effects
of one of the conflicting transactions and re-executes it until
it succeeds without conflicts.

Atomic blocks can contain arbitrary code of all regu-
lar C/C++ statements, including direct and indirect function
calls, and virtual function calls. This includes calls to pre-
compiled libraries (i.e., code that has not been compiled by
the transactional compiler) and those that perform arbitrary
I/O operations. Since the TM runtime cannot track the ac-
cesses inside precompiled code or roll back I/O operations,
calling into such code inside a transaction causes the run-
time to serialize execution of the transaction with respect to
other transactions – no other transactions are allowed to be
in-flight concurrently with the serial one. Section 4 describes
the details of this serial execution mode.

2.2 Abort statements
The tm abort statement (a user abort) allows the pro-
grammer to roll back an atomic block explicitly. This state-
ment must appear in the lexical scope of an atomic block.
It rolls back all side effects of the atomic block that stati-
cally encloses it and transfers control to the statement im-
mediately following the block. It ends the transaction if the
enclosing atomic block is the outermost atomic block.

Because the runtime cannot log the side effects of pre-
compiled functions, the tm abort statement can execute
only if the innermost atomic block containing it has not
called a precompiled function (unless that function is a
tm pure function as described in Section 2.4.2). A runtime
error will occur if an atomic block executes a user abort after
it has called a precompiled function:

__tm_atomic {
print(‘‘HelloWorld!’’);



__tm_abort; // error (runtime failure)
}

This does not preclude calling a precompiled function in
an atomic block that is at an outer dynamic nesting level
relative to the block containing the abort statement:

__tm_atomic {
print(‘‘HelloWorld!’’);
__tm_atomic {
__tm_abort; // OK

}
}

Nested atomic blocks have closed nesting semantics [37],
which means that the side effects of a nested transaction
commit become visible only when the dynamically outer-
most transaction commits. Abort statements allow a pro-
grammer to roll back a transaction partially by aborting the
innermost nested atomic block. The compiler and runtime,
therefore, may not flatten those nested atomic blocks that
contain user abort statements.

2.3 Single lock semantics
Atomic blocks provide single lock atomicity (SLA) seman-
tics [34]: A program behaves as if a single global lock guards
each atomic block. This guarantees that programs that are
race free under a single global lock will execute correctly
under transactional execution. These semantics support the
privatization and race free publication patterns [34]. A triv-
ial implementation of atomic blocks can use a single global
lock to implement isolation (though such an implementation
must still perform undo logging to support abort statements).
In fact the serial execution mode (which supports calling pre-
compiled binaries) falls back to using a single global lock to
implement atomic blocks.

Consistent with the emerging C/C++ memory model
specification [8], SLA semantics provides no guarantees for
programs containing data races. In the presence of data races
between transactions and non-transactional code, code exe-
cuting outside a transaction may see speculative or interme-
diate values produced by a transaction, and it may violate
the isolation of a transaction by writing to memory locations
accessed inside a transaction.

To support SLA semantics correctly, the STM implemen-
tation must guarantee several important safety properties,
namely privatization safety, granular safety, and observable
consistency[34]. These safety properties ensure that code
that is race free under a single global lock remains race free
under transactional execution; that is, they ensure that the
STM implementation does not introduce a data race into a
program that is otherwise race free under a single lock. Most
prior STM systems did not properly maintain these proper-
ties and thus cannot be used to implement single global lock
semantics for C/C++ atomic blocks.

2.4 Function annotations
To optimize code generation and allow the user to opti-
mize calls to functions that do not require instrumentation,
our system introduces function annotations (similar to [46]).
Any given function can be called from both inside and out-
side of an atomic block. To support both transactional and
non-transactional execution of functions efficiently, the com-
piler generates two versions of each function, one version
with instrumentation for transactional execution and one
version without. While just-in-time compilers can decide
whether and when to duplicate code at run time [2], static
C/C++ compilers must make this decision at compile time.
To avoid unnecessary code duplication, we introduce an an-
notation to denote functions (including class member func-
tions) that can be called from inside transactions. All an-
notations are specified using the declspec keyword on
Windows and the attribute keyword on Linux. The
examples that follow use the Windows notation.

2.4.1 tm callable

A tm callable function is one that the programmer intends
to call from inside a transaction and would like compiled
for efficient transactional execution. The compiler generates
two versions of the code for such functions, one with instru-
mentation and one without. The compiler uses a mangled
name for the transactional clone of a tm callable func-
tion. The name mangling simply adds a transactional suf-
fix to the function name and was designed to work correctly
with the template name mangling for tm callable function
templates. If a tm callable function calls an unannotated
function, the compiler generates code that triggers serial ex-
ecution unless it knows that the called function does not re-
quire instrumentation or it has automatically generated an
instrumented version of the called function.

2.4.2 tm pure

A tm pure function is one that the programmer asserts can
execute safely inside a transaction without requiring trans-
actional instrumentation and without switching to serial ex-
ecution. The programmer takes full responsibility for the be-
havior of tm pure functions. The main intent of tm pure is
to provide the programmer a way to optimize calls to pre-
compiled library functions (such as math functions) that are
known to be pure. The programmer can safely annotate a
function as tm pure if it does not access any static or non-
local memory or if it is pure from the perspective of higher-
level program logic (e.g., it accesses only immutable global
variables). The compiler can not validate the purity of all
functions; however, to help flag potential errors, it will issue
a warning if it compiles the definition of a tm pure function
and detects that it would have added transactional instrumen-
tation to that function.



2.4.3 tm unknown

The tm unknown attribute annotates a function whose TM
properties are unknown (e.g., it is unclear to the programmer
whether the function is going to be called from inside a
transaction, or the function is in a library and cannot be
recompiled by the TM compiler.) An unannotated function is
implicitly a tm unknown function. The compiler may decide
to create an instrumented version of a tm unknown function.
This annotation allows the programmer to override class-
level annotations described in Section 2.5.

2.5 Class annotations
The tm callable annotation is allowed on class declara-
tions including C++ template classes. All member functions
of a tm callable class, both virtual and non-virtual, are im-
plicitly tm callable. This is equivalent to annotating each
member function of the class as tm callable. This eases
C++ programming as it allows the programmer to annotate
once at the class level rather than annotating each member
function. In the following class declaration, for example,
both foo() and bar() are implicitly tm callable:

__declspec(tm_callable) class C {
void foo();
void bar();

};

Derived classes inherit the class-level tm callable an-
notation. In case of multiple inheritance, a derived class in-
herits the tm callable annotation if at least one of its base
classes is annotated with tm callable.

Function-level annotations override the class-level an-
notation. In the following class declaration, for example,
function foo() gets the class-level tm callable annotation
while function bar()’s class-level annotation gets overrid-
den with tm unknown:

__declspec(tm_callable) class C {
void foo();
__declspec(tm_unknown) void bar();

};

2.6 Virtual function overriding and inheritance
Virtual function overriding and inheritance introduce addi-
tional subtleties. A virtual function can legally override an-
other virtual function if and only if the two have compatible
TM annotations. Table 1 shows the compatibility rules. In
general, function overriding is legal if and only if the virtual
function in the derived class has the same annotation as in the
base class, or the function in the base class is tm unknown

In the case of multiple inheritance, a function in the de-
rived class may override virtual functions in the base classes
only if the rules specified in Table 1 hold separately for ev-
ery pair of functions in the base and derived class. Consider
a more complicated example that combines these rules:

derived class
base class tm callable tm pure tm unknown

tm callable yes no no
tm pure no yes no

tm unknown yes yes yes

Table 1. Compatibility rules for virtual function annotations

__declspec(tm_callable) class A {
__declspec(tm_unknown) virtual void foo();

};
class B {
__declspec(tm_callable) virtual void foo();

};

class C: A, B {
void foo();

};
class D: A, B {
__declspec(tm_pure) void foo(); // Error!

};

In this example, class C inherits the tm callable at-
tribute from class A, so C::foo() is implicitly tm callable.
According to the rules in Table 1, a tm callable function
(C::foo()) may override both tm unknown (A::foo())
and tm callable (B::foo()). At the same time, it is an
error to annotate D:foo() with tm pure, because it is in-
compatible with tm callable (B::foo()).

2.7 Templates
The function annotations can be used on template functions,
and the the tm callable annotation can be used on tem-
plate classes. The following example shows how a function
annotation can be used with function templates:

template <class T>
__declspec(tm_callable) T max(T a, T b) {
T result;
result = (a>b)? a : b;
return (result);

}

2.8 Exception handling
Uncaught exceptions that propagate out of an atomic block
cause the atomic block to commit its side effects. The al-
ternative strategy provides failure atomicity by rolling back
the atomic block’s side effects when an exception propagates
out of the atomic block. Our justifications for committing
the transaction are the following: (1) Committing is consis-
tent with a single lock semantics model as lock-based critical
sections do not roll back side effects on an uncaught excep-
tion; (2) it is impossible to roll back the state of an atomic
block if it has executed any tm unknown functions in serial
mode without instrumentation; (3) rolling back the transac-



void addCommitAction(void (*)(void*),void*)
void addUndoAction(void (*)(void*),void*)

Figure 1. API for adding user actions for tm wrap functions

tion could result in an inconsistent state for the thrown ex-
ception object (whose state may also be rolled back); and
(4) we believe that it is better to provide a separate explicit
mechanism for roll back than to overload exceptions with
roll back – the programmer can always catch exceptions and
explicitly roll back side effects using the tm abort state-
ment.

2.9 Support for writing transactional libraries
The system provides an additional annotation along with an
API that together allow the programmer to create optimized
transactional versions of libraries. Section 4.5 describes how
we use these features to create a transactional version of the
memory management library. The system also provides an
additional statement, tm waiver, supporting escape ac-
tions that allow programmers to reduce transactional instru-
mentation overhead whenever it is considered safe to do so.
These features are intended for experts (e.g., library develop-
ers) as programmers who use these features must understand
some of the details of how TM systems are implemented.

2.9.1 Function wrappers
The tm wrap annotation declares a transactional wrapper
function. Calls inside transactions to a “wrapped” function
are redirected to the user-specified wrapper function that
escapes the transaction. Transactions that execute in serial
mode may or may not execute wrapper functions as such
transactions might execute uninstrumented code. The fol-
lowing example shows how to declare a transactional wrap-
per fooTxn() for some function foo():

__declspec(tm_wrap(foo)) void fooTxn();

After seeing this declaration, the compiler translates ev-
ery in-transaction call to foo() into a call to fooTxn(),
which executes without TM instrumentation.

Like tm pure functions, the wrapper function is exe-
cuted without transactional instrumentation so the program-
mer takes responsibility for their correct behavior. Inside a
wrapper function, the programmer must be careful not to ac-
cess memory that has been accessed transactionally as such
an access may see an inconsistent or speculative value; that
is, the programmer must segregate the data accessed inside
the wrapper function from data that is accessed transaction-
ally by any thread including the thread making the call. The
programmer must also not execute any atomic blocks inside
the wrapper function.

2.9.2 Undo and commit actions
Inside wrapper functions, the programmer must register the
proper undo and commit actions to roll back or finalize

the effects of the wrapper function on an abort or commit,
respectively. A commit action executes when the transaction
commits. An undo action executes when the transaction rolls
back due to a user abort or a conflict.

The TM library exports an API (Figure 1) that the pro-
grammer can use to register commit and undo actions inside
of wrapper functions. addCommitAction adds an entry to
the commit action log. addUndoAction adds an entry to the
undo action log. In both functions, the first parameter is a
pointer to the function that implements the action, and the
second parameter is an argument that is passed to the action
when it executes.

Serial mode transactions containing no tm abort state-
ments do not roll back because they are guaranteed to com-
mit. The undo actions for such transactions are ignored and
their commit actions may execute immediately without ac-
tually being added to the commit action log.

2.9.3 Escape actions
Certain data accesses inside of transactions, such as ac-
cesses to private or read-only data, do not need to be in-
strumented and yet the compiler may not always be able to
detect such accesses automatically. The tm waiver state-
ment allows the programmers to convey such application-
level knowledge to the compiler and avoid unnecessary
instrumentation-related overhead. The tm waiver state-
ment defines a block of code that will not be instrumented
by the compiler and can be used by programmers to op-
timize a transactional application. Code regions defined by
the tm waiver statement in effect bypass the transactional
concurrency control mechanisms and as such should be used
with caution.

3. TM compiler
This section describes the compiler support required for
translating and optimizing the transactional language con-
structs. The compiler translates the transactional language
constructs into code instrumented with calls to an STM run-
time. The instrumentation is amenable to many classical
optimizations, such as redundancy elimination, dead code
elimination, and memory optimizations. The interface be-
tween the compiler and runtime is designed to support com-
piler optimizations and at the same time to support multiple
STM algorithms.

3.1 Compiler-runtime ABI
Prior work [46] tightly coupled the compiler and generated
code to the STM algorithms to maximize compiler optimiza-
tion opportunities. The compiler in [46], for example, inlined
the STM fast paths into the program binary and exposed the
operations that constitute the underlying STM algorithm to
compiler optimizations. This binds both the generated code
and the compiler to one particular STM algorithm and pre-
cludes changing the STM runtime or its algorithms without
changing the compiler and the generated code.



TxnDesc* getTransaction()
int begin(TxnDesc*,int)
void commit(TxnDesc*)
int beginInner(TxnDesc*,int)
void commitInner(TxnDesc*)
void userAbort(TxnDesc*)
void switchToSerialMode(TxnDesc*)
void write<Type>(TxnDesc*,Type*,Type)
Type read<Type>(TxnDesc*,Type*)
void memcpy(TxnDesc*,void*,void*,size t)
void logValue<Type>(TxnDesc*,Type*)
void logBulk(TxnDesc*,void*,size t)
void writeAW<Type>(TxnDesc*,Type*,Type)
Type readAR<Type>(TxnDesc*,Type*)
Type readAW<Type>(TxnDesc*,Type*)
Type readFW<Type>(TxnDesc*,Type*)

Figure 2. Compiler-runtime ABI

In contrast, the compiler-runtime ABI in this work decou-
ples the compiler and generated code from the runtime. This
approach sacrifices some compiler optimization opportuni-
ties but significantly increases the flexibility of the runtime:
It allows the runtime to switch STM algorithms dynamically,
and it allows the runtime library developer to replace the li-
brary in the field if necessary.

We believe that this is the right trade off to make. At
high thread counts, the STM algorithms will likely influence
end-to-end application performance more than compiler op-
timizations that are designed to reduce single-thread over-
heads of the STM. For low threads counts, a single global
lock mode executing uninstrumented code may yield even
better performance than an STM. Moreover, research on
STM algorithms will likely continue into the future, and it
is premature to commit to a single STM algorithm as the
best; therefore, it is best to keep the generated code flexible
so that new STM algorithms can be linked dynamically.

Although we limit our discussion to STM in this paper,
support for hardware acceleration also requires a flexible
runtime supporting dynamic switching between TM algo-
rithms. Prior work [41, 43, 12] has developed various al-
gorithms for accelerating TM performance using different
hardware acceleration techniques. Our system can dynami-
cally switch between different algorithms to take advantage
of hardware acceleration.

Figure 2 shows the ABI between the compiler and run-
time. Each transaction has a descriptor structure (TxnDesc)
that holds the transaction meta-data. The descriptor is kept
in thread local storage (TLS). The ABI functions all take an
explicit argument for the descriptor structure to avoid redun-
dant TLS accesses.

The begin and commit functions start and end a trans-
action, respectively. The begin function acts like a setjmp

in that it may return multiple times. On the initial begin call,
the return code directs the generated code to take the instru-
mented or uninstrumented code path. The runtime can direct
execution to the uninstrumented code if it decides to start
a transaction in serial mode. On a conflict or tm abort,
the runtime executes a longjmp back to the begin function
and returns a code that directs the generated code to re-
execute or abort the transaction. The second argument of
the begin function passes flags communicating information
about the generated code to the runtime. This information in-
cludes whether the compiler has generated instrumented or
uninstrumented code, whether the atomic block has an abort
statement, and whether it will (or might) call precompiled
code (i.e., a tm unknown function). The runtime uses this
information to select the most appropriate execution mode.

When generating instrumented transactional code, the
compiler knows if any atomic block it encounters is nested.
The compiler flattens nested atomic blocks unless they con-
tain an abort statement, in which case it generates calls to the
beginInner and commitInner functions. Abort statements
are translated to the userAbort function.

The switchToSerialMode function switches the trans-
action to the serial execution mode. As described later, the
compiler inserts a call to this function before the first call to
a tm unknown function. If the compiler detects that all paths
through the atomic block call a tm unknown function then
it will communicate this fact to the runtime in the begin
function; the runtime may then start the transaction in serial
mode.

The compiler translates each transactional memory ac-
cess into a call to the read and write functions (also known
as barriers). There is a read and write function for each prim-
itive data type. These frequently-called functions use regis-
ter parameter calling conventions to reduce their overhead.
As an optimization, the interface provides a function imple-
menting memory copying inside of transactions (memcpy).

Writes to local variables and thread-local variables must
be logged in case of an abort but don’t need to be tracked for
conflict detection as other transaction can’t access them. The
compiler explicitly saves and restores live scalar locals that
are modified by the atomic block on transaction begin and
abort, respectively. No logging is necessary for such vari-
ables when they are written inside the atomic block. For
a transactional write to a non-scalar local or a thread-local
variable, the compiler generates a call to the logValue ABI
function followed by the write operation instead of gener-
ating a call to the write function. The logValue function
logs the old value of an address without tracking conflicts to
that address. The logBulk function similarly logs a memory
range and can be used to log aggregates.

3.2 Barrier optimizations
Our design strategy of decoupling the compiler and gener-
ated code from the STM runtime precludes many optimiza-
tions on the read and write barriers. The compiler cannot in-
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Figure 3. Memory access optimizations

line barrier fast path code sequences into the generated code,
for example, as such code sequences depend on the STM al-
gorithm. Similarly, redundancy elimination can’t eliminate
barriers that may appear redundant as such optimizations
also depend on the STM (e.g., a read barrier that is domi-
nated by a write barrier to the same location is redundant in
an in-place-update STM but not in a write-buffering STM).

To enable barrier optimization, the ABI provides special-
ized read and write barriers that encode the interesting re-
dundancy patterns between read and write operations. These
barriers allow the compiler to communicate the results of
redundancy analysis to the STM runtime. Section 4.2.3 de-
scribes how the runtime eliminates redundant STM opera-
tions in these specialized read and write barriers for the dif-
ferent STM algorithms.

The readAW and writeAW barriers are used instead of
regular read and write barriers where a read or write ac-
cess to a given location is dominated by another write to
the same location executed within the same transaction.
(readAR stands for “read-after-read”, readAW stands for
“read-after-write”, and readFW stands for “read-for-write”,
etc. ) The readAR barrier is used instead of a regular read
barrier where a read access to a given location is dominated
by another read from the same location executed within the
same transaction. The compiler uses the readFW barrier in-
stead of a regular read barrier when it detects that a read
operation from a given location will always be followed by
a write to the same location. To use this barrier, the compiler
first transforms the write operation into an internal writeAR
operation and then transforms it into a writeAW operation
after it replaces the read that dominates the write with a
readFW operation.

Figure 3 shows an example of memory access optimiza-
tions using the specialized read and write barriers. This fig-
ure shows a control flow graph at different optimization
stages.

3.3 Function calls
A function’s annotation determines whether the compiler
generates a transactional clone of that function. The clone

contains calls into the runtime ABI and has a mangled
version of the function’s name. The compiler clones all
tm callable functions and those tm unknown functions
that it detects might be called from inside a transaction. A
simple inter-procedural analysis detects the set of functions
reachable from inside a transaction.

The function annotations also determine the code gener-
ation strategy for direct function calls. Within transactional
code, the compiler generates calls to the mangled names of
cloned functions and to the tm wrap functions for wrapped
functions; otherwise, it generates calls to the original unin-
strumented function. For tm unknown functions that it didn’t
clone, it inserts a call to the switchToSerialMode ABI
function before the call. Calls to tm pure functions go to the
uninstrumented version without switching to serial mode as
the programmer has asserted that these functions are safe to
execute inside of transactions without instrumentation.

Indirect function calls are slightly more complicated.
Function pointer types do not have annotations, so it is un-
clear to the compiler whether the target of an indirect call has
a clone or whether it requires serial execution because it is
precompiled and not a tm pure function. All function point-
ers point to the original uninstrumented code so that indirect
calls outside of transactions are not affected. Similar to [46],
the compiler generates a marker at the beginning of every
uninstrumented function that has a clone; Figure 4 illustrates
this marker. Inside transactions, an indirect function call first

ORG_FUNC_ENTRY:
jmp RENAMED_ORG_FUNC_ENTRY
mov eax, TM_INDIRECTION_MAGIC
jmp CLONED_FUNC_ENTRY

RENAMED_ORG_FUNC_ENTRY:
// original (un-instrumented)
// function code starts here

CLONED_FUNC_ENTRY:
// cloned (instrumented)
// function code starts here

Figure 4. Un-instrumented function’s prologue



checks whether the TM INDIRECTION MAGIC value exists at
a fixed offset from the target address in the function pointer.
If it does, then a cloned version of the function exists and the
call jumps to the clone’s address (CLONED FUNC ENTRY).
Otherwise, the call first switches to serial execution mode
before calling the original address in the function pointer.
This scheme adds an extra level of indirection to indirect
function calls inside of transactions.

This technique for implementing indirect calls unfortu-
nately treats precompiled tm pure functions as tm unknown
functions: Inside transactions indirect calls to precompiled
tm pure functions trigger serial execution. To avoid this for
tm pure function that it recompiles, the compiler generates
a prologue similar to the one presented in Figure 4 but with
both jump targets pointing to the same un-instrumented ver-
sion of the code.

Generating calls to virtual member functions requires
special care. Because of the virtual function overriding and
inheritance rules defined in Section 2.6, the compiler knows
that all functions that override a tm callable or tm pure
virtual function will have the same annotation. So calls to
tm callable virtual functions can indirectly call the clone
of the target function via the address in the target func-
tion’s prologue, and calls to tm pure virtual functions can
simply call the target function without any checks. Calls to
tm unknown virtual functions, however, must dynamically
check whether a clone of the target function exists using the
same technique as for indirect calls.

Inlining transactionally annotated functions also requires
special care when such functions are inlined into atomic
blocks or into transactional clones. The compiler’s interme-
diate representation includes special code markers that al-
lows inlining of tm pure functions. These markers ensure
that the compiler omits transactional instrumentation for the
inlined body of a tm pure function. The compiler automati-
cally promotes the inlined body of a tm unknown or unanno-
tated function to tm callable if it inlines the function into
another transactional clone or atomic block.

4. TM runtime
In this section we describe runtime support for multi-mode
execution, discuss in detail our STM algorithms, introduce
our contention management strategy, and present a technique
enabling safe in-transaction explicit memory allocation and
deallocation.

4.1 Execution modes
The STM runtime supports four execution modes: (1) opti-
mistic, (2) pessimistic, (3) obstinate, and (4) serial. The first
two execution modes use an STM algorithm that implements
in-place updates (eager versioning) with strict two-phase
locking[17] for writes. The algorithm implements both op-
timistic and pessimistic concurrency control for reads (the
optimistic and pessimistic modes, respectively) and allows

the runtime to choose dynamically between these two modes
on a per-transaction basis. The STM system can switch be-
tween these two modes mid-way through a transaction. It al-
lows optimistic and pessimistic transactions to execute con-
currently and to read the same data. This is the first STM al-
gorithm that can support both forms of concurrency control
at the same time, while preserving important safety proper-
ties such as privatization safety [45, 34]. We refer to this new
STM algorithm as the unified STM algorithm.

A transaction running in serial mode never conflicts with
another transaction – regular transactions are forbidden to
run concurrently with a serial transaction. A transaction run-
ning in obstinate mode always wins all conflicts with other
transactions – regular transactions are allowed to run con-
currently with the obstinate one, but the obstinate transac-
tion has the highest conflict resolution priority of all transac-
tions in the system. The serial mode provides a mechanism
for executing precompiled code and unrestricted I/O oper-
ations, while the obstinate mode provides an efficient exe-
cution mode for long running transactions that are likely to
have conflicts and are expensive to roll back.

To allow dynamic switching between modes, each trans-
action descriptor contains a pointer to a function dispatch
table containing functions that implement the mode-specific
compiler-runtime ABI functions. Each of the four execu-
tion modes defines its own function dispatch table. The ABI
functions are implemented as indirect calls through the mode
pointer to the actual functions implemented for the mode. To
switch modes a transaction simply points its descriptor’s dis-
patch table pointer to the desired mode’s dispatch table. Al-
though the extra indirection adds overhead to each read and
write barrier, it allows the runtime to select the most efficient
execution mode for each transaction. Section 4.4 discusses
mode switching in more detail.

A serial transaction containing no user abort statements
does not require instrumentation because it is guaranteed
to commit and there are no other concurrent transactions
with which it can conflict. When starting such a transac-
tion, the runtime selects execution of un-instrumented code
if the compiler has indicated that it has generated an un-
instrumented version of an atomic block. But in case the
compiler did not generate an uninstrumented version of an
atomic block, (e.g., to minimize code bloat) the runtime has
a serial mode dispatch table with trivial read and write barri-
ers that simply access memory. In addition, the runtime has
a fifth serial atomic dispatch table to support serial mode ex-
ecution of atomic blocks that contain user abort statements.
To support roll back, write barriers in this dispatch table log
old values on writes.

4.2 Unified STM algorithm
The pessimistic mode algorithm uses a bit-vector to repre-
sent the set of visible readers who have locked a memory
location for shared reading. Pessimistic reader-writer locks
automatically provide observable consistency and, in the ab-



Optimistic TxnRec Pessimistic TxnRec
State Encoding Upper bit values Encoding Upper bit values Meaning

0..001 all zero no pessimistic readers
Shared x..x1 version number x..x01 bit-vector of readers read locked

x..x11 bit-vector of readers read locked with pending upgrade
Exclusive x..x0 owner TxnDesc 0..000 all zero write locked by optimistic

x..x00 owner bit mask write locked by pessimistic

Figure 5. Transaction record encoding

sence of optimistic readers, also automatically provide priva-
tization safety [34, 33]. The optimistic mode algorithm uses
a timestamp-based algorithm that incrementally updates a
transaction’s timestamp by validating the transaction each
time it reads a value that has a more recent time stamp. Like
other timestamp-based algorithms [46, 13], it keeps a con-
sistent read set thus maintaining observable consistency. To
implement privatization safety in the presence of optimistic
readers, all transactions must quiesce [46, 13, 33] on com-
mit.

The quiescence algorithm maintains a global quiescence
list of timestamps for all in-flight transactions. Every pes-
simistic transaction has an infinite timestamp. Every opti-
mistic transaction sets its timestamp at the beginning of its
execution to the value of the global timestamp, and updates
it every time it successfully validates its read set. Before
committing, every transaction must wait for all transactions
whose timestamp in the list is smaller than its own times-
tamp. After a transaction commits or aborts it sets its corre-
sponding timestamp to infinity.

A pointer-sized transaction record (or TxnRec) tracks the
transactional state of aligned memory blocks accessed inside
transactions. The memory block size is a parameter of our
system that we set to be the same as the cache line size
but can be any power-of-two size. A fixed-sized transaction
record table contains all of the transaction records. Each
table entry has two TxnRecs, one for optimistic and the other
for pessimistic concurrency control. A hash function maps
memory addresses to entries in this table.

A TxnRec table entry can be in either the shared state,
indicating that multiple transactions can read the data that
maps to that entry, or the exclusive state, indicating that a
single owning transaction can read or write the data that
maps to it. Figure 5 summarize the pessimistic and opti-
mistic TxnRec bit encodings. In the exclusive state, the op-
timistic TxnRec contains a pointer to the descriptor of the
owning transaction while the pessimistic TxnRec contains
a bit mask uniquely identifying the exclusive owner. In the
shared state, the optimistic TxnRec contains a timestamp
value while the pessimistic TxnRec contains a bit-vector rep-
resenting the visible readers who have read-locked the data
that maps to the TxnRec. The least-significant bit of the opti-
mistic TxnRec distinguishes between the shared and exclu-
sive states: Timestamps are odd values and transaction de-

scriptor pointers point to word-aligned structures. Similarly
for the least-significant bit of the pessimistic TxnRec.

4.2.1 Write barrier algorithm
On a write, a transaction first acquires exclusive ownership
of the pessimistic TxnRec regardless of whether it is running
in optimistic or pessimistic mode. Once it has acquired ex-
clusive ownership of the pessimistic TxnRec, it then changes
the optimistic TxnRec to the exclusive state. A transaction
can change the value of the optimistic TxnRec only when
holding exclusive ownership of the pessimistic TxnRec. To
release exclusive write ownership, a transaction releases the
optimistic TxnRec (by storing a new timestamp into it) be-
fore releasing the pessimistic TxnRec. The pessimistic Txn-
Rec thus acts as a write-lock for the entire table entry. This
implies that a transaction always has exclusive ownership of
the pessimistic TxnRec if it has exclusive ownership of the
optimistic TxnRec.

Figure 6 shows the write barrier algorithm for both op-
timistic and pessimistic modes.(We show only the barrier
algorithms for accessing an integer. The algorithms for other
data types are similar.) The write barrier first acquires ex-

writeInt(txn, addr, val) {

acquireLock(txn,addr);

logUndoInt(txn, addr);

*addr = val;

}

acquireLock(txn,addr) {

txnRecPtr = getTxnRecPtr(addr);

txnRec = txnRecPtr->pessimistic;

if (tnxRecPtr->optimistic == txn)

return; /* already have ownership */

if (isReadOrWriteLocked(txnRec) ||

!CAS(&txnRecPtr->pessimistic,txnRec,

txn->ownerBitMask)

{ acquireLockSlow(txn,addr); }

logWrite(txn,txnRecPtr);

if (txnRecPtr->optimistic > txn->localTimeStamp)

{ validate(txn); }

/* lock the optimistic TxnRec */

txnRecPtr->optimistic = txn;

}

Figure 6. Write barrier algorithm



validate(txnDesc) {

ts = globalTimeStamp;

for (txnRecPtr in txnDesc->readSet) {

txnRec = txnRecPtr->optimistic;

if (isWriteLocked(txnRec)) {

if (txnRec != txnDesc)

txnAbort(txnDesc):

} else {

if (txnRec > txnDesc->localTimeStamp)

txnAbort(txnDesc);

}

}

txnDesc->localTimeStamp = ts;

updateQuiescenceList(ts);

}

Figure 7. Validation algorithm

clusive ownership on the blocks containing the accessed
data (acquireLock) and then logs the old value in the
undo log (logUndoInt) before performing the write. The
acquireLock function checks for redundant lock acquisi-
tion requests and then attempts to acquire exclusive owner-
ship of the pessimistic TxnRec if it detects no data access
contention. If exclusive ownership of the pessimistic Txn-
Rec cannot be immediately acquired, execution falls into
the slow path. The acquireLockSlow function (not shown)
handles the slow case of handling conflicts with other trans-
actions and upgrading read locks to write locks. Section 4.3
describes contention management in more detail.

After acquiring ownership of the pessimistic TxnRec, a
transaction executing the write barrier logs a pointer to the
TxnRec into the write set (for later unlocking) and puts
the optimistic TxnRec into the exclusive state. Then, if this
transaction is optimistic, it validates its read set if the opti-
mistic TxnRec has a later timestamp than the transaction’s
current time stamp. (Since the transaction has acquired own-
ership of the pessimistic TxnRec, the optimistic TxnRec
must be holding a time stamp). The validation procedure
(Figure 7) checks that for each optimistic TxnRec in the
read set either the transaction has exclusive ownership of
that TxnRec or the timestamp of the TxnRec is not greater
than that of the current transaction’s. This ensures that the
transaction sees a consistent view of memory. The valida-
tion procedure also updates the local time stamp of the cur-
rent transaction to reflect that it is consistent with respect to
the current global time stamp and updates the transaction’s
timestamp in the global quiescence list.

4.2.2 Read barrier algorithm
The optimistic and pessimistic execution modes use differ-
ent read barriers, and each mode uses its respective Txn-
Rec. Figure 8 shows the optimistic mode read barrier. The
read barrier executes a straight line fast path for the case
in which the transaction already owns the optimistic Txn-
Rec, or the case in which the TxnRec is not owned exclu-

int readOptimisticInt(txnDesc,addr) {

val = *addr;

txnRecPtr = getTxnRecPtr(addr);

txnRec = txnRecPtr->optimistic;

if (txnRec == txnDesc) return val;

if (isWriteLocked(txnRec) ||

txnDesc->localTimeStamp < txnRec )

return readSlowOptimisticInt(txnDesc,addr);

logRead(txnDesc, txnRecPtr);

return val;

}

int readSlowOptimisticInt(txnDesc,addr) {

txnRecPtr = getTxnRecPtr(addr);

do {

txnRec = txnRecPtr->optimistic;

val = *addr;

}while(!validateAndLog(txnDesc,txnRecPtr,txnRec));

return val;

}

int validateAndLog(txnDesc,txnRecPtr,txnRec) {

if (isWriteLocked(txnRec) ||

!checkReadConsistency(txnDesc,txnRecPtr,txnRec))

{

contentionOnRead(txnDesc, txnRecPtr);

return 0;

}

logRead(txnDesc,txnRecPtr);

return 1;

}

int checkReadConsistency(txnDesc,txnRecPtr,txnRec){

if (txnRec > txnDesc->localTimeStamp)

validate(txnDesc);

return *txnRecPtr == txnRec;

}

Figure 8. Optimistic read barrier algorithm

sively by anyone and has an earlier timestamp than the cur-
rent transaction. It delegates all other cases to a slow path
(readSlowOptimisticInt). The fast path logs a pointer to
the TxnRec into the read set (for later validation) in the case
where the TxnRec is not exclusively owned by anyone.

The optimistic mode read barrier slow path loops read-
ing both the TxnRec and the data until it sees that a TxnRec
is not locked by another transaction. The validateAndLog
function verifies that a TxnRec is not owned by another
transaction and also post-validates the TxnRec using the
function checkReadConsistency. Post-validation ensures
that the transaction’s read set is consistent with the times-
tamp stored in the optimistic TxnRec and that the value of
the timestamp has not changed in the meantime. On con-
tention, control passes to the contentionOnRead function
in the contention manager.



int readPessimisticInt(txnDesc,addr) {

txnRecPtr = getTxnRecPtr(addr);

txnRec = txnRecPtr->pessimistic;

if (!isLockedByMe(txnDesc,txnRec)) {

return readSlowPessimisticInt(txnDesc,txnRecPtr);

}

return *addr;

}

int readSlowPessimisticInt(txnDesc,txnRecPtr) {

txnRec = txnRecPtr->pessimistic;

while (isWriteLockedOrUpgradeRequested(txnRec) ||

!CAS(&txnRecPtr->pessimistic,txnRec,

txnRec ^ txnDesc->ownerBitMask)) {

contentionOnRead(txnDesc,txnRecPtr);

txnRec = txnRecPtr->pessimistic;

}

logRead(txnDesc,txnRecPtr);

return *addr;

}

Figure 9. Pessimistic read barrier algorithm

Figure 9 shows the pessimistic mode read barrier. The
read barrier fast path completes successfully if the transac-
tion already owns a read or write lock on the TxnRec; oth-
erwise the execution falls into the slow path. The slow path
loops until it can acquire a read lock on the TxnRec and
then logs a pointer to the TxnRec into the read set (for later
unlocking). Similarly to the optimistic read barrier, control
passes to the contentionOnRead function on contention.
The read barrier gives priority to any transaction who has
requested an upgrade from a read lock to a write lock.

4.2.3 Optimized barriers
Section 3.2 described how the compiler communicates re-
sults of data flow analysis to the runtime via specialized bar-
riers. This section describes how the runtime system opti-
mizes these specialized barriers.

The readAW (read-after-write) and writeAW (write-after-
write) functions contain only a simple load or store since
the transaction already holds an exclusive lock for that lo-
cation in both the pessimistic and optimistic modes. The
readAR (read-after-read) functions contain a simple load for
pessimistic transactions since the transaction already holds a
read lock for the read location. For optimistic transactions,
these functions do not update the read set since the loca-
tion has already been added to the read set, and, if the cur-
rent transaction’s timestamp is smaller than the one stored in
the optimistic TxnRec, the current transaction immediately
aborts because the location may have been updated by other
transactions. The readFW (read-for-write) function allows
the runtime to take a write lock immediately, thus avoiding
unnecessary read logging and avoiding the need to promote a
read lock later (pessimistic read concurrency) or to perform
additional validations (optimistic read concurrency).

4.2.4 Transaction commit and abort
A committing outermost pessimistic transaction first re-
leases all its read locks. A committing outermost optimistic
transaction first validates its read set, aborting if validation
fails. As an optimization, this validation is performed only
if the write set is not empty and the timestamp of the trans-
action is less than the current global time stamp (indicating
that other transactions have committed since the last time
the transaction validated). The commit algorithm then re-
leases write locks and quiesces on all other in-flight opti-
mistic transactions (to ensure privatization safety). Finally,
the commit algorithm executes all the commit actions reg-
istered for a given transaction. The compiler flattens nested
transactions that contain no abort statements. Nested trans-
actions that cannot be flattened perform no actions on com-
mit.

An aborting transaction, pessimistic or optimistic, reverts
all the updates performed within the scope of the transaction
and executes all the undo actions registered for a given
transaction. An outermost transaction releases all its locks
and consults the contention manager with respect to actions
that may have to be taken before it is re-executed (e.g.,
exponential back-off).

4.2.5 Quiescence optimizations
The runtime performs two optimizations to reduce or avoid
the cost of quiescence. The lazy start optimization delays
declaring a transaction as optimistic for as long as possible,
reducing the time interval during which other transactions
need to wait for it during quiescence. Instead of setting the
transaction’s timestamp at transaction start, this optimization
sets the timestamp to infinity until the first optimistic read
barrier, at which point it sets the timestamp to the value of
the global timestamp. Read after write and read for write
barrier functions as well as all the write barrier functions
do not set the timestamp as these barriers hold a lock for the
memory access. As we show in Section 5, this technique sig-
nificantly improves the performance of workloads in which
all reads are read for writes or read after writes.

In the filtering optimization, quiescence uses a mask to
skip over transactions that have not performed optimistic
reads. Each transaction is assigned a stability flag byte in
a global mask that indicates whether the transaction has
performed any optimistic reads (not including read after
writes or read for writes). Eight stability flags make a 64-
bit integer, which can be checked in one instruction. Instead
of going through all transactions one by one, quiescence
can now quickly check eight transactions a time. If a 64-
bit chunk of the mask in nonzero, it can check individual
bytes using binary search and quiesce only on transactions
with nonzero stability flag bytes. This optimization reduces
quiescence cost for programs in which most transactions
don’t perform optimistic reads.



4.3 Contention management
The STM runtime’s contention management framework al-
lows multiple contention handling policies to be plugged in
via a contention management interface. The current system
provides a default policy that uses exponential back-off and
a policy that uses a variant of the polka policy [49]. The
contentionOnRead() and contentionOnWrite() func-
tions handle the case in which a transaction encounters con-
tention when attempting a data access operation, whereas the
contentionOnAbort() function handles the case in which
a transaction has aborted and is about to re-execute. Each
policy implements a dispatch table containing pointers to
these functions, and each transaction holds a pointer to a dis-
patch table for the contention management policy.

4.4 Mode switching
A transaction starts in optimistic mode. The obstinate mode
guarantees forward progress of long transactions, so a con-
tention manager may transition an optimistic transaction to
obstinate mode if the transaction re-executes too many times
due to conflict. If the transition to obstinate mode fails be-
cause of another obstinate transaction, then a contention
manager may simply transition the transaction to pessimistic
mode. The transition can occur in-flight or on re-execution
of the transaction.

To become pessimistic in-flight, an optimistic transaction
validates its read set and acquires pessimistic read locks for
all the transaction records in its read set. If this fails, the
transaction aborts and restarts in pessimistic mode. We do
not support in-flight transitions in the opposite direction – a
pessimistic transaction can become optimistic, but only on
re-execution.

An obstinate transaction is simply a unique pessimistic
transaction that has the highest conflict resolution priority
in the system. An optimistic transaction can reach obstinacy
only after becoming pessimistic. The system allows at most
one obstinate transaction at at time, implemented using an
obstinacy token. A transaction must acquire this token in
order to become obstinate.

A serial transaction runs exclusively with respect to all
other transactions – no other transaction is allowed to run
while a serial transaction is running. This is different from
an obstinate transaction, which can coexist with other trans-
actions. A transaction can transition to the serial mode either
in-flight or on re-execution. To transition in-flight, a trans-
action first becomes obstinate, which ensures that no other
obstinate or serial transaction is present in the system. It
then transitions to serial mode and waits until all transac-
tions complete. No new transactions can start while a serial
transaction exists.

4.5 Transactional memory management
In order for an STM system to be practical, it must provide a
safe and efficient mechanism supporting memory allocation

and de-allocation inside of transactions. Failing to provide
adequate memory management support may lead to serious
performance and safety problems, such as memory exhaus-
tion or dangling references.

Unlike previous work on transactional memory manage-
ment [27], our system builds on top of the default platform
memory allocator. This avoids requiring the developer to
rebuild the entire application with a custom transactional
memory allocator. We use the tm wrap annotation described
in Section 2.9 to implement wrappers for all memory alloca-
tion functions. The wrappers also register commit and undo
actions that need to be executed by the memory allocator on
transaction termination.

Similar to the solution presented in [27], we associate a
ticket number with each allocation and de-allocation site.
Non-transactional code has an implicit ticket number equal
to 1. A non-nested transaction starts with a ticket number
equal to 2, increments it on the start of every nested trans-
action, and decrements it on every commit. Unlike in [27]
our ticket numbers are thread-local and do not have to be
unique across threads. Ticket numbers are used to determine
if a free operation can be executed immediately or should be
deferred until a future transaction commit.

In addition to allocating the requested memory, the al-
location function wrapper creates an allocation record and
stores it in a thread-local table. The allocation record con-
tains the address of an allocated memory fragment and the
current ticket number. The function wrapper also registers
commit and undo actions to be executed on commit or abort
of the outermost transaction. The commit action removes
the allocation record from the table. The undo action re-
moves the allocation record and de-allocates the given mem-
ory fragment.

The de-allocation function wrapper determines when to
de-allocate a memory chunk based on the chunk’s ticket
number, which it looks up in the allocation record table
using the chunk’s memory address.2 The wrapper function
de-allocates memory immediately if the ticket number is
greater than or equal to the current ticket number. Otherwise,
it registers a commit action to be executed on commit of
the innermost transaction where the ticket number of the
resuming transaction meets the conditions for de-allocation.
The commit action simply deallocates the given memory
fragment, and deletes its associated allocation record if one
exists.

5. Experimental results
To evaluate our system, we experimented with a wide range
of workloads, including STAMP[9], SPLASH2[51], and
PARSEC[4]. Our results show that the optimistic mode out-
performs the pessimistic mode, but the pessimistic algorithm
performs competitively in many cases, especially at low con-

2 If no record exists, the allocation site is non-transactional and assigned a
ticket number of 1



Figure 10. Scalability of STM. The numbers are reported as speedups over the single-thread execution of the same programs
using coarse-grained locks, running in 1, 2, 4, and 8 threads.

tention levels. In addition, we found compiler optimizations
and runtime quiescence optimizations very effective for re-
ducing the overhead of STM and improving its scalability.

5.1 Workloads and experimental environment
We ported and ran 20 programs from the benchmark suites
of STAMP[9], SPLASH2[51], and PARSEC[4] for our ex-
periments. STAMP is a TM benchmark suite developed
by Stanford. We used version 0.9.4, which contains three
programs, all of which feature relatively long transactions
compared to traditional parallel workloads. SPLASH2 is
a benchmark suite of classical parallel programs, includ-
ing numerical analysis kernels and scientific and graphics
applications. According to our measurements, most of the
SPLASH2 programs spend less than 1% execution time in
critical sections (and some of them 5% with large input).
Some of the SPLASH2 programs, however, use parallel pro-
gramming patterns that are interesting from a TM perspec-
tive; for example, barnes uses double-checked locking to
avoid locking overhead when loading the contents of an oct-
tree data structure, and radiosity does privatization to take
tasks off a shared task queue. We also used one program
– fluidanimate – from the PARSEC suite in our evaluation.
This program simulates fluids and features extremely short
atomic regions (one increment operation each) in extremely
large numbers (more than 10 million).

The STAMP programs were originally written using
transactions. We ported STAMP to our language constructs
and created a coarse-grained lock version of them by us-
ing a single global lock to guard every atomic block. The
SPLASH2 programs were originally written using fine-
grained locks. We created a transactional version of SPLASH2

by replacing the lock-based critical sections with atomic
blocks and created a coarse-grained version by replacing all
the locks with a single global lock. We did the same thing
for fluidanimate to create transactional and coarse-grained
lock versions. For some SPLASH2 programs, we also in-
creased the input size. For barnes, raytrace, and radiosity,
the programs finished in seconds when running in a single
thread using the original input. With our input, they finished
in minutes when running in a single thread.

The barnes program contains a data race in its double-
checked locking pattern. This program breaks when trans-
lated to use transactions because of this data race. We
rewrote barnes to remove this data race and to make it com-
ply with the emerging C++ memory model [8]. Eliminating
the data race not only fixed the problem but also improved
its performance relative to locks.

We ran our experiments on an 8-core system with 8GB
of main memory running RedHat Enterprise Linux Version
4. The system had two sockets, each with a quad-core Intel
Xeon X5355 (Clovertown) CPU at 2.66GHz. Each CPU had
an 8MB L2 cache. Our STM was configured to use a table
of 220 transaction record entries and cache-line-granularity
for conflict detection.

5.2 Scalability of STM
Figure 10 shows the scalability of our system, running the
20 programs from STAMP, SPLASH2, and PARSEC. The
numbers are reported as speedup over single-thread execu-
tion of the same programs using coarse-grained locks, and
they include all compiler and runtime optimizations. For
each program, we show the speedups with 1, 2, 4, and 8
threads. Numbers greater than 1 reflect better performance
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Figure 11. Comparison of optimistic STM (oSTM), pessimistic STM (pSTM), coarse-grained locks (CGL) and fine-grained
locks (FGL). Numbers are reported as speedup over single-thread execution of CGL. We don’t have a version of STAMP using
fine-grained locks.

than single-thread coarse-grained locks, while numbers less
than 1 reflect worse performance.

Most of the programs scaled well using our STM. At 2
or more cores, the SPLASH2 programs and fluidanimate all
perform better than the single-core coarse-grain lock config-
uration. Some of the SPLASH2 programs – cholesky, fft,
and ocean – did not scale well due to lack of large in-
put. These programs also don’t scale using coarse-grained
or fine-grained locks. At 4 or more cores, the STM con-
figuration performed better than the single-thread coarse-
grained lock configuration for all STAMP programs except
vacation/high. We observed that vacation/high had many
false conflicts due to cache-line granularity conflict detec-
tion, so finer-grain conflict detection should improve the per-
formance of vacation/high. To achieve good scalability on
kmeans and genome, we used tm waiver blocks for reads
to shared read-only data.

Past work has considered optimistic STM superior to pes-
simistic mainly because the latter performs lock operations
on transactional reads [40]. We measured the scalability of
both, and compared them to the coarse-grained lock con-
figuration running the same workloads. Figure 11 measures
the performance of the optimistic and pessimistic modes of
the runtime and compares it with the performance of fine-
grained and coarse-grained locks. (Note that we don’t have
fine-grain versions of the STAMP programs. Also, in this
figure and in the rest of this section, we limit our discussion
of results for SPLASH2 to three programs – barnes, raytrace,
and radiosity – which had non-trivial critical sections com-
pared to the rest of the SPLASH2 programs.) Figure11(a)
shows the single-thread speedup of the optimistic mode,
pessimistic mode, and fine-grain lock configurations rela-
tive to coarse-grain locks. The results in Figure11(a) show
that both STM modes imposed additional single-thread over-

head compared to coarse-grained locks. This overhead was
mostly caused by the compiler instrumentation for read and
write barriers. STAMP programs are affected by this more
than SPLASH2 or fluidanimate. The pessimistic mode in-
curred slightly more overhead than the optimistic mode due
to the lock operations it does on reads. As the number of
threads increases, STM starts overcoming this instrumenta-
tion overhead and starts beating coarse-grained locks. The
results in Figure 11(b)) show that at 8 threads STM per-
forms better than coarse-grained locks, and for SPLASH2
performs close to fine-grained locks. In most programs, pes-
simistic performs close or equal to optimistic, but in genome
and vacation/low, pessimistic performs significantly worse
because of the lock operations it does on reads.

5.3 Runtime quiescence optimizations
Figure 12 shows the overhead of quiescence (privatization
safety) and the performance improvements from the qui-
escence optimizations. The numbers in this figure show
speedups over a baseline STM that uses the quiescence al-
gorithm described in Section 4.2 but without quiescence op-
timizations. To measure the overhead of quiescence (priva-
tization safety), we measured the performance of our work-
loads with quiescence disabled. Because the majority of
our benchmarks (all but radiosity) do not use the privati-
zation pattern, it is legal to turn quiescence off for them.
Disabling quiescence improved the performance of the op-
timistic algorithm for all the benchmarks except for vaca-
tion/high (as noted before, vacation/high suffers from false
conflicts). Quiescence incurs a significant overhead on the
STM, over 150% in the case of barnes and 40% or more in 5
other workloads. The filtering and lazy start quiescence op-
timizations both reduced the overhead of quiescence. Some
workloads benefit mostly from the lazy start optimizations



Figure 12. Optimizations for quiescence

while others benefit mostly from the filtering optimization,
so a combination of both optimizations appears to be the
best strategy. The combined optimizations gain back most
of the overhead of quiescence and improve the performance
of barnes and fluidanimate by almost 200%. For fluidanimi-
ate, the optimized optimistic STM even outperformed the
STM with quiescence disabled because the lazy start tech-
nique also reduced the number of read set validations in the
read barriers. (Note that the numbers in Figures 11 and 10
include these two optimizations.)

5.4 Compiler optimizations
Figure 13 shows the performance improvements from using
the compiler optimizations described in Section 3.2. This
figure shows results for 1, 2, 4, and 8 threads as speedup
over using no compiler optimizations for the same number
of threads. Fluidanimate benefits the most from compiler op-
timizations, with a 150% improvement at 8 threads and 48%
at 4 threads. Kmeans/low and kmeans/high also benefit sig-
nificantly, with improvements of 26% and 43%, respectively,
at 8 threads. These improvements were due mostly to the
read-for-write barriers introduced by the compiler optimiza-
tions and described in Section 3.2. For fluidanimiate and
kmeans, this optimization turns all read barriers into read-
for-write barriers, which combined with the quiescence op-
timization avoids quiescence and validation costs.

6. Related work
Several STM systems have introduced the basic atomic
block language construct into C [46, 10, 3, 35, 15, 28].
Some of these approaches introduce pragmas [46, 28] and
OpenMP extensions [3, 35]. In contrast, our work aims to in-
troduce first class C++ language constructs for TM that are
orthogonal to the programming model and interact correctly
with other C++ language features. Crowl et al. [10] explore
some of the high-level alternatives to introducing TM lan-
guage constructs into C++. Other systems have introduced

Figure 13. Compiler optimizations

the basic atomic block language construct into managed lan-
guages [20, 21, 39, 2, 22, 26]

Several of these past systems also provide an explicit con-
struct to rollback a transaction in the form of either an abort
[46, 10] or a retry statement [21, 2, 3, 35]. The commit and
abort actions available in our system are reminiscent of the
handlers used in the recent proposals for open-nested trans-
actions [38] and for transactional boosting [23], in which
handlers can be used to implement finalizing and compensat-
ing actions. In addition to certain subtle differences in their
behavior, handlers used with open nesting differ from ac-
tions used in our system by being automatically executed as
separate transactions.

Instead of first-class language constructs, some systems
provide an STM library interface [25, 13, 24, 31, 14]. Some
of these systems leverage C++ language features (such as
multiple inheritance, templates, and operator overloading)
to eliminate the syntactic clutter associated with STM APIs
[11, 16]. In contrast, first-class language extensions provide
syntactic convenience to the programmer, enable compiler
optimizations for TM, and enable static analyses that provide
static guarantees.

Different STM systems implement different types of con-
currency control. Existing eager versioning (i.e., in-place
update) STM systems support pessimistic concurrency con-
trol for writes and either optimistic [2, 22] or pessimistic
[40] concurrency for reads. Lazy versioning (i.e., write-
buffering) STM systems [13, 47, 20] can support optimistic
concurrency control for write operations as well. Unlike the
system described in this paper, none of the existing STM
systems has allowed concurrent transactions that use differ-
ent concurrency control mechanisms.

The idea of mode switching has appeared previously but
only in the context of systems that utilize a mix of hardware
and software transactional memory techniques [41, 12, 29,
43]. In the phased TM approach [29], all transactions in the
system execute in the same mode – one failing hardware
transaction causes all transactions in the system to execute in



software. In the Hybrid TM [12] and hardware-accelerated
STM [41] approaches, a transaction may execute either in a
pure software mode or in a mode that uses hardware support
for TM, and transactions using different modes can execute
concurrently.

Memory models for STM systems and issues concerning
transactional semantics in general have recently attracted
significant attention. Blundell et al. [5] introduced the no-
tions of weak and strong atomicity. Shpeisman et al. [42],
Abadi et al. [1], and Moore and Grossman [36] have all fur-
ther investigated these issues. Menon et al. [34, 33] and
Grossman et al. [18] discuss several other TM memory
model issues, along with implications that language memory
models, such as the Java Memory Model [30] or the emerg-
ing memory model for C/C++ [8], may have for TM. Finally,
issues concerning the desirable safety properties that STM
systems should preserve when executing concurrent transac-
tions, such as privatization or publication safety, have been
explored by Spear et al. [45], Menon et al. [34, 33] and
Abadi et al. [1], among others.

In order to guarantee safety of STM systems in a more
general sense, certain key mechanisms must be designed and
implemented carefully to work correctly in a transactional
context. Correct handling of I/O and calls to legacy code
from inside transactions was first proposed by Blundell et al.
[6] for hardware transactions and then by Spear et al. [44]
and Welc et al. [48] in the context of an STM. Solutions
for safe and efficient memory management in STM systems
have been addressed by Hudson et al. [27] (explicit memory
allocation for unmanaged languages) and McGachey et al.
[32] (automatic memory management through garbage col-
lection).

STM systems must efficiently manage contention be-
tween concurrently executing transactions. Herlihy et al.
[24] introduced the concept of contention managers sepa-
rated from the rest of the STM system. In [49] and [50],
Scherer and Scott further investigated and evaluated sev-
eral different contention management policies. Examples of
other topics investigated in this area include contention man-
agement policies with provable worst case properties (Guer-
raoui et al. [19]) or identification of performance pathologies
that may result from using certain contention management
policies (Bobba et al. [7]).

7. Conclusions
In this paper we presented a software transactional memory
system that introduces first-class C++ language constructs
for transactions. We described new C++ language extensions
to support transactional memory. These constructs support
C++ language features such as classes, inheritance, virtual
functions, exception handling, and templates. We extended
an existing, high-performance production C/C++ compiler
to translate and optimize these new language extensions. We
presented a novel STM runtime library implementing both

optimistic and pessimistic concurrency control, as well as
other important features such as support for calls to legacy
binaries and unrestricted I/O. We also presented a thorough
experimental evaluation of our STM system on a large set of
TM workloads and demonstrated that our system performs
well across these workloads.
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