
Graph Analysis – Do We Have to Reinvent the Wheel?

Adam Welc
Oracle Labs

adam.welc@oracle.com

Raghavan Raman
Oracle Labs

raghavan.raman@oracle.com

Zhe Wu
Oracle

alan.wu@oracle.com

Sungpack Hong
Oracle Labs

sungpack.hong@oracle.com

Hassan Chafi
Oracle Labs

hassan.chafi@oracle.com

Jay Banerjee
Oracle

jayanta.banerjee@oracle.com

ABSTRACT
The problem of efficiently analyzing graphs of various shapes
and sizes has been recently enjoying an increased level of at-
tention both in the academia and in the industry. This trend
prompted creation of specialized graph databases that have
been rapidly gaining popularity of late. In this paper we ar-
gue that there exist alternatives to graph databases, provid-
ing competitive or superior performance, that do not require
replacement of the entire existing storage infrastructure by
the companies wishing to deploy them.

1. INTRODUCTION
Many important computational problems from different

problem areas, such as circuit analysis, machine learning or
biotechnology, can be expressed in the form of graph algo-
rithms. Consequently, the search for convenient and efficient
solutions for executing graph algorithms has been enjoying
an increased level of attention both in the academia and in
the industry. In particular, the graph database systems have
been recently gaining a lot of popularity.
Graph databases offer similar functionality as the rela-

tional databases (e.g. reliable persistent storage, ACID [5]
transactions), but instead of internally representing data as
tables, they represent it directly in the form of a graph. The
intention is to avoid the data representation mismatch when
working with graph-shaped data (e.g. by avoiding transla-
tion to and from the relational table and column format),
which should provide unbeatable performance when execut-
ing graph algorithms.
In this paper we argue that there exist viable alternatives

to specialized graph databases, providing competitive or su-
perior performance, that do not require replacement of the
entire existing storage infrastructure by the companies wish-
ing to deploy them. We will show that for certain important
types of graphs, contrary to popular belief, implementations
of graph algorithms in SQL can deliver performance match-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Graph Data Manage-
ment Experience and Systems (GRADES 2013), June 23, 2013, New York,
NY, USA.
Copyright 2013 ACM 978-1-4503-2188-4 ...$15.00.

ing or exceeding that of the dedicated graph databases. We
will also demonstrate that even larger performance advan-
tage over graph databases can be achieved using in-memory
graph analysis engines that can utilize relational database
as the storage solution.

One of the prime examples of the graph database tech-
nology which we use for a limited performance study pre-
sented in this paper is Neo4j [11], ”The World’s Leading
Graph Database” 1 - this claim backed up by a multitude
of customers [10] and descriptions of extremely favorable
comparisons with solutions based on the relational database
technology [12].

We certainly do not question some of the intuitively solid
performance benefits of the graph databases. For example,
with certain types of data encodings a single graph edge
traversal may have to be implemented in SQL as a separate
join operation [6], which indeed incurs significant overhead.
In fact, this is confirmed by some our own performance eval-
uation results presented in this paper. It is also not our in-
tention to criticize Neo4j specifically, as it is clearly a useful
piece of technology appreciated by its multiple clients. In-
stead, our main goal is to demonstrate that graph databases
are not the only viable solution for solving all graph-related
problems. We simply use Neo4j as a representative example
of the graph database technology, and contrast its perfor-
mance with those of a SQL-based solution layered on top
of a general-purpose relational database, and with a system
utilizing the Green-Marl Domain Specific Language (DSL)
for graph analysis [7] featuring custom-built DSL compiler
and graph analysis runtime. Due to space limitations, in this
work we focus on evaluating implementations of one impor-
tant graph analysis algorithm - Dijkstra’s shortest path [3].

The main contributions of the paper include:

1. We show that performance advantage claims of Neo4j
over the SQL-based solutions do not always hold. In
particular, we provide experimental evidence demon-
strating that SQL-based implementation of Dijkstra’s
shortest path for graphs representing data from so-
cial networks provides at least competitive and in most
cases superior performance to that of Neo4j’s.

2. We demonstrate that while comprehensive graph stor-
age and analysis solutions utilizing database technol-
ogy are certainly useful for some use-cases, they cannot

1Wording taken verbatim from the first page of Neo4j’s web
site at http://www.neo4j.org/

match the performance of in-memory graph analysis
engines in typical usage scenarios.

3. We discuss trade-offs between solutions for graph anal-
ysis utilizing database technology and the in-memory
graph analysis engines, followed by a proposal for an
integrated architecture aiming at best performance and
usability.

2. SHORTEST PATH ALGORITHMS
The ability to efficiently compute shortest paths is not

only an important graph problem by itself, required for ex-
ample to find the smallest number of people connecting two
members of a social network, but it is also a building block
for other important graph problems, such as betweenness
centrality where a relative importance of a given graph node
is expressed as the number of shortest paths in the graph
passing through that node. Consequently, shortest path is
a suitable candidate for preliminarily comparing different
platforms supporting graph analysis, and it is supported by
Neo4j’s public API “out of the box”.
Many algorithms exist that can be used to find the short-

est path between two nodes in a graph. In particular, Neo4j
(only) supports“standard”(uni-directional) Dijkstra’s short-
est path algorithm, Dijkstra’s bi-directional shortest path al-
gorithm (all versions of Dijkstra’s algorithm used in this pa-
per are described in Section 2.1), and A∗ shortest path algo-
rithm. Even assuming that all graph analysis engines imple-
ment the same exact version of the algorithm, it is difficult to
perform a fair direct comparison between different platforms
as they may use different graph representations, utilize dif-
ferent auxiliary data structures, or even be implemented in
different languages. As the goal of our performance study is
to merely demonstrate that performance-wise there exist al-
ternatives to graph databases, it is in our opinion reasonable
to compare performance of the best shortest path algorithm
available on each platform. Consequently, for SQL we eval-
uate bi-directional set-based version of Dijkstra’s shortest
path and for both Neo4j and Green-Marl we evaluate bi-
directional non-set-based version of Dijkstra’s shortest path.

2.1 Dijkstra’s shortest path
In this section we describe various flavors of Dijkstra’s

shortest path algorithm.

2.1.1 Uni-directional Dijkstra
In the uni-directional version of Dijkstra’s algorithm [3] all

nodes maintain the shortest distance from the source node
(computed so far) – initially 0 for the source node and in-
finity for all other nodes. Every node whose shortest path
from the source node has been found is said to be finalized.
The algorithm also maintains a frontier, which is a set of
nodes that have been touched (i.e., shortest distance is not
infinity) but not finalized. The algorithm begins with only
the source node in the frontier and no finalized nodes.
First, the algorithm picks a node with the minimum dis-

tance from the frontier, which we refer to as the current
node. The algorithm finalizes the current node because the
shortest path from the source node to the current node has
been found. It then expands the current node to its neigh-
bors – it compares the neighbor’s shortest distance with the
sum of the current node’s shortest distance and the cost
of the edge leading from the current node to the neighbor

node. If the neighbor’s shortest distance is larger than the
computed sum then the cost of the neighbor node is relaxed,
that is replaced with the value of the computed sum, and
the neighbor node is inserted into the frontier if it is not al-
ready in there. The algorithm repeats the above steps until
either the destination node is finalized (path found) or the
frontier is empty (path not found).

2.1.2 Bi-directional Dijkstra
The bi-directional version of Dijkstra’s shortest path [9]

attempts to improve over the uni-directional one by proceed-
ing with the shortest path search both from the source node
and from the destination node, picking one of the two di-
rections to expand at every step of the algorithm. Note the
shortest path search from the destination node is done on the
graph where the direction of all edges are reversed. The bi-
directional version of the algorithm is designed to prune the
search space, that is limit the number of nodes that would
otherwise have to be expanded by the uni-directional algo-
rithm. The basic version of the algorithm terminates when
a common node is finalized by both forward (from source)
search and reverse (from destination) search.

One common optimization applied to the bi-directional
version of Dijkstra’s shortest path is the following. The al-
gorithm maintains the global minimum path cost – the cost
of the shortest path computed so far from the source node
to the destination node, which is initially set to infinity.
The global minimum path cost may get updated after both
forward search and reverse search relax a common node.
The algorithm terminates if both forward search and reverse
search exhaust their search space without encountering a
common node (no path found) or if the sum of minimum
paths in both search directions gets larger than the global
minimum path (path found – searching in either direction
can only result in increasing the global path cost). This op-
timization is included in all implementations evaluated in
this paper.

Multiple additional optimizations exist for the bi-
directional version of Dijkstra’s shortest path algorithm.
These include the choice of direction to expand at every
step, different termination conditions, constraints to avoid
expansion to nodes that could never lead to shortest paths,
etc. Please refer to [4, 9, 15] for the description of some of
these optimizations.

2.1.3 Bi-directional set-based Dijkstra
In the non-set based version of Dijkstra’s bi-directional

shortest path algorithm, by analogy to the uni-directional
variant, only one current node is selected from possibly mul-
tiple frontier nodes with the same shortest distance, as de-
scribed in Section 2.1. The bi-directional set-based version
of Dijkstra’s shortest path [4] groups processing of all fron-
tier nodes with the same shortest distance into a single op-
eration. This strategy relies on the assumption that the cost
of the operation on the set of nodes is significantly smaller
than the sum of the individual nodes processing costs, and
works particularly well in the case of SQL implementation
as in this case both the set operation and individual node
operation require a single SQL statement each.

3. GRAPH ANALYSIS SOLUTIONS
In this section we will present an overview of the three

graph analysis solutions used in our performance case-study.

3.1 Green-Marl
Green-Marl [7] is a Domain Specific Language (DSL) de-

signed specifically to facilitate easy expression of graph al-
gorithms - the notions of graph, node and edge (along with
node and edge properties) are explicit in the language as are
some of the popular graph operations required for implemen-
tation of graph algorithms (e.g. node and edge iterations,
breadth-first search, depth-first search, parallel value reduc-
tions etc.).
The open-source and publicly available2 Green-Marl lan-

guage infrastructure includes a multi-backend optimizing
compiler capable of generating code targeting, among oth-
ers, a shared memory runtime written in C/C++ (paral-
lelism support is provided by the OpenMP [2] library). The
runtime features in-memory graph analysis and, as such,
does not support durability or database-like transactions,
but allows access to both graph structure (nodes and edges)
and graph properties. The nodes and edges of the graph
are stored in the Compressed Sparse Row (CSR) represen-
tation, also used by other popular systems used for graph
analysis, such as the SNAP library [1]. This representation
consists of two contiguous arrays. One array stores id-s of
all nodes in the graph. The other array, for each (source)
node in the first array stores information about this node’s
outgoing edges in the form of (destination) node id-s. The
edge cost properties required for shortest path computation
are internally represented as an array of integer values where
each value in the array is mapped to a single edge id.
The implementation of Dijkstra’s shortest path in Green-

Marl is a fairly straightforward transliteration of the original
algorithm description. Due to space limitations we omit the
detailed description – the source code of the bi-directional
version of Dijkstra’s shortest path used for our experiments
is available in Green-Marl’s public repository 3. The Green-
Marl code implementing the algorithm gets translated by the
Green-Marl compiler to C/C++. Then, it is compiled with
a standard C++ compiler and linked together with a simple
driver program responsible for loading the graph from the
file and for measuring the execution time.

3.2 Neo4j
Neo4j is an open-source NOSQL graph database which

offers features similar to relational databases like reliability
with full ACID transactions, durability, and scalability. As
with all graph databases, the major attraction of Neo4j is
that it has an intuitive graph model for data representation.
This graph model seems to be a natural fit in the world of
graph processing and analytics.
Neo4j stores data in the form of nodes and edges (also

known as relationships) in a graph with properties attached
to these nodes and edges. With this data model graph
traversals are done intuitively by going from a node to its
neighbors through direct links. This is unlike relational
databases where a graph traversal may require several joins
or look-ups on tables.
We use the implementation of Dijkstra’s algorithm that

comes with the Neo4j distribution for our evaluation. Note
that Neo4j comes with two implementation of Dijkstra’s al-
gorithm, one is the original uni-directional version and the

2https://github.com/stanford-ppl/Green-Marl
3https://github.com/stanford-ppl/Green-
Marl/apps/src/bidir dijkstra.gm

other is the bi-directional version. In this paper, we show
the results of the bi-directional version since it consistently
performs better than the uni-directional version at least by
an order of magnitude.

We access Neo4j ’s functionality through the Java API
that comes with the Neo4j distribution. First, our Java pro-
gram parses the input dataset in adjacency list format and
creates a Neo4j database by performing batch insertion. The
nodes and edges in the input dataset are added as nodes and
relationships in the Neo4j database. The costs of the edges
are added as properties of the corresponding relationships
in the Neo4j database that is being created.

3.3 SQL
SQL is a standard-based, versatile and powerful language

for querying structured data. Many existing real-world ap-
plications, including mission critical ones that need to run
24x7, are based on SQL and modern RDBMS, such as Oracle
Database (which we use to evaluate SQL queries for the pur-
pose of this paper). This makes integration of graph analysis
with the existing applications much easier, particularly con-
sidering extensive tooling support that has been built around
SQL and RDBMS, including Data Management UI, Business
Intelligence, and Data Mining. Furthermore, the RDBMS
technology has been in development for decades and all of
its components, including transaction support, SQL execu-
tion engine, as well as memory, CPU and I/O subsystem
management, are highly optimized. For all these reasons,
we believe that SQL and RDBMS should be considered as a
viable solution for some classes of graph analysis problems.

In our SQL-based approach, we model a directed weighted
graph using a simple relational table with three columns:
integer-typed source node ID column (SID), integer-typed
destination node ID column (DID), and numeric weight col-
umn W. Two B-Tree indexes are created to allow easy look-
ups in both forward and backward directions. The first index
is a multi-column index consisting of columns (SID, DID, W)
and the second index consists of columns (DID, SID, W). The
reason why the weight column W is included in both indexes
is that these two multi-column indexes provide all necessary
information for path calculations. In other words, there is
no need to access the base graph table at query time.

Our implementation of bi-directional set-based version of
Dijkstra’s shortest path algorithm has been inspired and
closely resembles implementation in the FEM framework de-
veloped by Gao et al. [9]. In particular, the core expansion
and relaxation operations of the bi-directional, set-style Di-
jkstra algorithm are carried against an intermediate working
table (IWT) which starts as an empty table and gets popu-
lated and updated as the search for the shortest path un-
folds. The IWT consists of a node ID column, two columns
for minimum cost path computed by both the forward and
the reverse search, shortest path, two columns each node’s
predecessor (in the forward search) and successor (in the re-
verse search) 4, and two flag columns denoting if the current
node has been finalized in either of the search directions.

Similarly to the version of the algorithm in the FEM
framework, the core of our implementation is a single SQL
MERGE statement combining the work of selecting, expand-
ing and relaxing the frontier nodes, but the two implemen-
tation differ in two notable aspects:

4The node’s predecessor and successor information is used
to retrieve the actual path.

19 13 14 19 13 9 14 13 10 14 19 23 13 13 13 15 16 22 10 9 11 8 13 8 8 14 18 16 12 12 17 12 11 17 10 15 11 11 14 19 14 13 18 15 14 18 16 14 15 15 M
shortest path length for each src/dst pair

0.01

0.1

1

10

ex
ec

ut
io

n
tim

e
- l

og
 sc

al
e

(s
)

Neo4j
SQL
G-M

Figure 1: Execution times for LIVEJ graph (50 random src/dst pairs)

1. The IWT is created as a temporary table and no index
on this table is used. This is based on a careful evalu-
ation of many different table and index configurations
including partitioned table, regular table, temporary
table, compressed table, uncompressed table, global
index, local index, and no indexes. Empirical results
suggest that especially analyzing graphs representing
large-scale social networks, a temporary table with no
indexes produces the most promising performance.

2. The SQL MERGE statement used in our algorithm
implementation not only does the node selection, ex-
pansion and relaxation, but also carries out the main-
tenance of the global minimum path cost (see Section
2.1.3) between the source node and the destination
node. In the FEM framework’s implementation com-
putation of the global minimum path cost involved ex-
ecution of an additional SQL statement.

4. PERFORMANCE EVALUATION
As discussed in Section 2, for our performance evaluation

we choose to compare the best implementation of Dijkstra’s
shortest path available on each platform. We are evaluating
these algorithm using the following social graphs:

• LIVEJ – graph representing members of a free on-line
community (available from Stanford’s Large Network
Dataset Collection 5): ∼4.8M vertices, ∼69.0M edges,
average degree ∼14.2, maximum degree 20293

• TWITTER – graph representing Twitter user pro-
files and social relations between users (available as
part of the Twitter site analysis work by Kwak et
al. [8] 6): ∼41.7M vertices, ∼1.47B edges, average de-
gree ∼35.3, maximum degree 2997469

Both of these graphs come with just the connectivity infor-
mation (nodes and edges) – for the purpose or running the
shortest path computations we generated random integer
edge costs in the 0–100 range.

5http://snap.stanford.edu/data/soc-LiveJournal1.html
6http://an.kaist.ac.kr/traces/WWW2010.html

4.1 Experimental setup
All numbers have been collected on an Intel Xeon E5-2660

(Sandy Bridge) machine (2x 8 hyper-threaded 2.2GHz cores,
264GB of RAM) running 64-bit SMP Linux 2.6.39. The ma-
chine has been equipped with 4 250GB SSD drives. Config-
uration options specific to a given graph analysis platform
are specified below.

4.1.1 Green-Marl
As described in Section 3.1, algorithms expressed in

Green-Marl language are translated to C++ by the Green-
Marl compiler – the final binary was compiled using gcc
v4.4.7. Default options for both the Green-Marl compiler
and the Green-Marl runtime have been used when conduct-
ing the experiments. We used the Green-Marl distribution
available in the open source repository dated at 28/03/2013.
Prior to executing each timed run, the respective graph
has been loaded into Green-Marl’s in-memory representa-
tion from a Green-Marl-specific binary file format (we report
graph loading overheads below).

4.1.2 Neo4j
In this paper, we evaluate the open-source community edi-

tion of Neo4j version 1.8.2, which is the latest stable release
of Neo4j at the time of writing this paper. We use Java JDK
v1.6.0 43 running the server class JVM in 64 bit mode.

We have experimentally chosen the minimum memory
configurations such that the garbage collection (GC) over-
head is less than 5% of the total execution time: for the
LIVEJ graph we set the JVM heap size to 16GB and for the
TWITTER graph to 32GB. In order to get the best results
for the TWITTER graph we had to change Neo4j’ default
cache configuration from“soft” to“none”. Otherwise the GC
overhead was prohibitive resulting in extremely long execu-
tion times – even after increasing the heap size to 128GB,
with the soft cache, the GC overhead was ∼48% resulting in
a nearly 2x slowdown compared to the 32GB heap size con-
figuration with no cache. The remaining Neo4j parameters
have been calculated based on the size of each input graph,
as described in Neo4j’s documentation.

After graph data stored in the file system has been
batch-loaded into Neo4j (see Section 3.2), we shutdown the

7 5 5 6 0 6 6 8 7 5 8 7 8 6 5 6 7 6 5 4 8 7 6 8 9 4 9 5 5 4 6 11 4 6 7 5 4 8 8 3 6 4 7 8 6 8 6 7 4 8 M
shortest path length for each src/dst pair

0.01

0.1

1

10

100

1000

ex
ec

ut
io

n
tim

e
- l

og
 sc

al
e

(s
)

Neo4j
SQL
G-M

Figure 2: Execution times for TWITTER graph (50 random src/dst pairs)

database so that it is stored to disk. We re-open the same
database as an Embedded Read Only Graph Database in
Neo4j (we found this configuration to deliver better av-
erage performance than the “standard” Embedded Graph
Database). Then, we use the bi-directional Dijkstra imple-
mentation that comes with Neo4j to compute shortest paths
on this database.

4.1.3 SQL
A pre-release version of Oracle Database 12c was used as

the RDBMS to run our proposed SQL based implementa-
tions. The graph data together with the SQL logic were
managed by a 12c Pluggable Database (PDB) [13] which is
planned as a new feature for multi-tenancy. Out of the to-
tal 264GB of RAM, we allocate 8GB and 8GB for Program
Global Area (containing data and control information for
database processes) and System Global Area (part of RAM
shared by all processes that belong to a database instance),
respectively. We have experimentally confirmed that this
memory configuration yields the best performance for the
SQL runs.

4.2 Results
In Figures 1–2, we plot the execution times for the best

available implementation of Dijkstra’s bi-directional shortest
path algorithm available on each graph analysis platform:
non-set-based versions for Neo4j and Green-Marl, and set-
based version for SQL.
In our opinion, a typical use of a graph analysis engine

is to accept and process multiple requests with a varying
input. Consequently, we report execution times for 50 ran-
domly chosen source/destination pairs for each graph, mea-
sured within the same invocation of the graph analysis en-
gine 7. We present both “cold” execution times (to the left
of each plot) and “warm” execution times (to the right of
each plot) 8. Execution times are plotted on the logarith-
mic scale and the labels on the x-axis indicate the length
7During our experiments, we have collected numbers for 200
random pairs but the execution times for the remaining 150
pairs do not contribute any additional significant informa-
tion.
8We observed the difference between“cold”and“warm”exe-
cution times for the same pair reaching up to ∼65% in favor

of each shortest path found (0 for cases where no path has
been found). The right-most set of bars on each plot (la-
beled “M”) represents a geomean of the execution times for
all pairs.

The analysis of the execution times presented in Figures
1–2 confirms the premises underlying this paper:

1. When analyzing social graphs, performance of an opti-
mized SQL-based implementation of Dijkstra’s short-
est path algorithm is competitive with (Figure 1) or
better (Figure 2) than the best implementation of the
same algorithm available in Neo4j.

2. The best implementation of Dijkstra’s shortest path
algorithm by the in-memory graph analysis engine sig-
nificantly outperforms both database-based solutions.

Please note that we do not claim that SQL-based implemen-
tation will always outperform the one provided by Neo4j.
We merely observe that the SQL-based version works well
for a certain important class of graphs, that is social graphs.
As the cost of a single SQL operation is fairly high, perfor-
mance of the SQL-based solutions is bound to suffer when
dealing with algorithms or graphs that trigger execution of a
large number of SQL statements. In particular, we observe
that the SQL-based shortest path algorithm applied to road
network graphs is significantly slower than the Neo4j ver-
sion due to much longer paths (on the order of thousands)
whose discovery can involve hundreds of thousands of SQL
operations. However, in the same setting, Green-Marl still
significantly outperforms Neo4j.

Please also note that there exists an inherent tradeoff be-
tween both database-based solutions and the in-memory so-
lution. The in-memory solution offers superior performance
but requires loading the whole graph into memory before
the analysis can begin. Consequently, depending on the use-
case scenario, the in-memory solution may be favored over a
database-based one or vice-versa. The graph loading times
(not included on the plots), for Green-Marl-specific binary
file format residing in the filesystem are ∼7.7 seconds for
the LIVEJ graph and ∼153.8 seconds for the TWITTER

of the “warm” runs, depending on the analysis engine used
and the graph being analyzed.

graph. An additional related trade-off exists with respect to
the memory footprint – SQL and Neo4j have to load only
portions of the graphs into memory and thus their memory
requirements (see Section 4.1.2 and Section 4.1.3) can be sig-
nificantly lower than dynamic memory footprint we observed
for Green-Marl runs (up to ∼39GB for the TWITTER
graph but, at the same time, only ∼3GB for the LIVEJ
graph).These trade-offs motivated us to propose a unified
solution combining a “traditional” database-based approach
with an in-memory approach.

5. UNIFIED GRAPH ANALYSIS
In-memory graph analysis systems typically do not pro-

vide a comprehensive data storage solution. Furthermore, as
graph analysis requests often do not mutate the graph, the
implementation of these systems is optimized towards the
read-only workloads. For example, Green-Marl’s in-memory
graph representation (CSR), described in Section 3.1, is
compact and efficient when supporting read-only analysis
requests, but it is not designed to support frequent graph
mutations. Finally, in-memory solutions may have to load
the whole graph into memory before the analysis can begin.
On the other hand, since one of the main tasks of the

databases is to handle data mutation in addition to read-
only analysis requests, graph analysis solutions utilizing the
database technology can handle graph updates in a very nat-
ural way. These solutions can also achieve reasonable perfor-
mance due to their ability to cache data being incrementally
loaded into memory, but they have difficulties matching per-
formance of the in-memory solutions as, in addition to guar-
anteeing that data in the cache and in the persistent store
are in-sync, they often moderate access to data using strong
consistency models, such as ACID [5].
Based on these observations, we would like to propose an

architecture that combines both styles of graph analysis, and
plan to build a corresponding system as part of our future
work. It is our belief, backed up by performance evaluation
presented in this paper, that such system can be layered on
top of a relational database. The main idea is simple – use
Green-Marl as the high-level abstraction, target the same
schema representing graphs in the relational database, and
utilize multiple Green-Marl compiler backends to translate
the high-level abstraction to different low-level graph execu-
tion engines that the system’s runtime can dynamically and
automatically select based on the current use-case scenario.
Such system would deliver a powerful “knob” providing

the ability to dynamically adjust and control the trade-off
between different styles of graph analysis. In particular, the
compiler could generate both the SQL code and also the
C/C++ code targeting custom in-memory graph represen-
tation. Our plan also includes building a backend targeting
a hybrid graph execution engine that would offer a com-
prehensive alternative to graph databases by maintaining
an update-able in-memory graph representation supporting
fine-granularity caching of data retrieved from the relational
database. The hybrid solution would then be capable of both
reducing the graph loading cost of the current in-memory
solution and mitigate SQL’s per-operation overhead. This
idea is conceptually similar to the approach presented by
Sakr et al. [14] who maintain a portion of graph data in
memory (nodes and edges) and another portion in a rela-
tional database (properties). Their focus, however, is on
graph querying as opposed to our target algorithms which

are “global” in nature (e.g. pagerank) and it is unclear if
the choice of fixed division of graph data would work well in
such context. The solution we propose would likely not per-
form quite as well as the current in-memory systems such as
Green-Marl but considering that Green-Marl is from several
to several hundred times faster than Neo4j when analyzing
graphs of any size, we believe that design-wise it will be
possible to find an acceptable trade-off.

6. CONCLUSIONS
In this paper, we presented empirical evidence that for cer-

tain classes of graphs, solutions utilizing relational database
technology and in-memory graph analysis techniques can
offer performance superior to that of the dedicated graph
databases. We also observed that these performance im-
provements come with a certain trade-off and proposed an
architecture allowing the runtime to dynamically control this
trade-off.

7. REFERENCES
[1] D. A. Bader and K. Madduri. Snap: small-world

network analysis and partitioning.
http://snap-graph.sourceforge.net, 2010.

[2] O. A. R. Board. OpenMP application program
interface. http://www.openmp.org/mp-
documents/OpenMP_4.0_RC2.pdf, 2013.

[3] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1959.

[4] J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and
T. Wang. Relational approach for shortest path
discovery over large graphs. In VLDB, 2012.

[5] J. Gray and A. Reuter. Transactional Processing:
Concepts and Techniques. 1992.

[6] T. Hoff. Neo4j - a graph database that kicks buttox.
http://highscalability.com/neo4j-graph-
database-kicks-buttox, 2009.

[7] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun.
Green-Marl: a DSL for easy and efficient graph
analysis. In ASPLOS, 2012.

[8] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW,
2010.

[9] M. Luby and P. Ragde. A bidirectional shortest-path
algorithm with good average-case behavior.
Algorithmica, 1989.

[10] Neo4j. Neo4j customers.
http://www.neotechnology.com/customers/, 2013.

[11] Neo4j. Neo4j, the world’s leading graph database.
http://www.neo4j.org/, 2013.

[12] P. Neubauer. Graph databases, NOSQL and Neo4j.
http://www.infoq.com/articles/graph-nosql-
neo4j, 2010.

[13] M. Rajendran. Oracle database 12c: New features -
pluggable databases.
http://www.orafaq.com/node/2756, 2012.

[14] S. Sakr, S. Elnikety, and Y. He. Gsparql: A hybrid
engine for querying large attributed graphs. In CIKM,
2012.

[15] D. Wagner and T. Willhalm. Speed-up techniques for
shortest-path computations. In STACS, 2007.

