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ABSTRACT
Microservices architecture, which is increasingly being adopted
by large technology companies, can accelerate development and
deployment of backend code by partitioning amonolithic infrastruc-
ture into independent components. At the same time, microservices
often compose into massively distributed systems, where analyzing
the behavior of an individual service may not be enough to diag-
nose a performance regression or find a point of failure. Instead, a
more global view of the entire computation may be required, where
some form of global context is used to trace relevant information
flowing through the system.

In the Go language, the recommended method of propagating
this tracing context through service’s code is to pass it as the first
parameter to all functions on call paths where the context is used.
This kind of code transformation, in addition to modifying function
calls and function signatures, may involve modifications to other
language constructs – performing it manually can be very tedious,
particularly for large existing services. In this paper we describe
an automated code transformation tool supporting this style of
context propagation. We describe the design and implementation
of the tool and, based on a case study using real production services,
demonstrate that the tool can on average eliminate 94% of manual
effort required to propagate tracing context through the code of a
given service.
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1 INTRODUCTION
In recent years big technology companies with large backend in-
frastructures started moving from monolithic architectures to those
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Figure 1: Simple services architecture.

based on microservices. A microservices architecture accelerates
the development, deployment, and maintenance of the backend
code. At the same time microservices often compose into massively
distributed systems where monitoring, testing, and debugging can
be a big challenge [16, 21, 23]. The advantages of this architecture
come from the fact that services1 are loosely coupled and can be
developed largely independently, assuming the interactions with
other services are known and well defined. This loose coupling,
however, is also a source of challenges since a single service does
not operate in a vacuum.

For example, consider the simple services architecture in Figure 1,
where the Restaurants service returns locations of all restaurants
of a given type within a given area. TheRestaurants service fulfills
a request it receives by first obtaining a list of all nearby restau-
rants at a given location from theMap service, and then passing
it on to the Data service containing detailed restaurant informa-
tion so that only restaurants of a given type can be identified and
returned. Even in this simple architecture an engineer observing
that the Restaurants service is misbehaving cannot easily tell if
the problem is with the Restaurants service itself or with other
services participating in the computation. In the case of a more
complicated microservices architecture, an engineer may not even
know which other services are a part of the whole computation pro-
cess. These types of problems motivated development of distributed
tracing solutions, such as provided by Dapper [24] or featured in
TChannel [27].

At a high level, as defined by the authors of Dapper [24], dis-
tributed tracing “needs to record information about all the work
done in a system on behalf of a given initiator” (i.e., the Restau-
rants service in our example). This requires some form of tracing
context2 to store relevant information as the initiator’s request
propagates through the system and the work on its behalf is done
by different services. The decision on what kind of information
this context must contain is very much dependent on the details
(e.g., functionality, architecture) of a given backend system. Context
1For brevity, in the remainder of this paper we will call microservices simply services.
2In the remainder of this paper, we will simply use the term context.
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Listing 1: the Data service
func handler(ctx context.Context,

s Service,

r Request) {

query := parseRequest(ctx, r)

res := getResult(query)

send(ctx, s, res)

}

func getResult(q Query) Result {

...

}

func execQuery(q Query) Result {

return rdbms.exec(q)

}

can also be utilized in different ways, for example by a specialized
tracing backend (e.g., TChannel uses the Zipkin backend [26]) or by
a logging subsystem (to log information aggregated across different
services).

On the implementation side the challenge is that the context for
a given request must be propagated both across services (so that
all services involved in the computation are captured, particularly
that a given service may be handling requests on behalf of different
initiators) and through the code of each individual service (so that
all relevant information can be captured at appropriate places). The
former issue can be solved by mandating a specific communica-
tion protocol. For example, outbound calls in TChannel [27] are
required to pass the context as the first argument so that it is readily
available in the receiving service’s request handler. A solution for
the problem of propagating context through the code of an individ-
ual service may vary between different programming languages,
but the canonical method in Go, as recommended by Google, is to
pass it on “as the first argument to every function on the call path
between incoming and outgoing requests” [1]. When implementing
a service from scratch, it may be relatively easy to maintain the
required discipline, but with a large number of existing services
and APIs evolving from context-unaware (i.e., not storing any data
into the context) to context-aware (i.e., utilizing context to record
some relevant information), this task may be daunting.

For example, consider the Go pseudo-code for the Data service
in Listing 1. In Go, context is typically represented by the Context
type provided in Go’s context package [11], and in our example
it is available as the first argument to the handler function called
whenever the Data service receives a new request r from another
service s. The request is parsed and then, possibly through a long
sequence of calls (e.g., involving query optimization, caching, etc.),
passed to the database engine (rdbms) to obtain the final result.
Assume that initially the only information considered relevant
for the trace was the query parsing duration (e.g., as a potential
bottleneck). Further assume that at a later time the system architects
decide to include database engine behavior in the trace by evolving
its API to include context. In other words, the rdbms.exec(q) call
needs to change to rdbms.exec(ctx, q). The problem, of course,

is that the ctx value must now be propagated all the way from the
top-level request handler to the execQuery function, which may
involve modifying a potentially large number of other calls that
may not even be easy to identify via code inspection.

Performing such a code transformation task manually is not very
appealing, particularly for a large number of services. At the same
time, despite passing context explicitly as the first argument being
the Go-recommended approach, there is no tooling to support it.
Consequently, we built a code transformation tool that can ease
the burden of propagating a context parameter through the code of
a service by largely automating the process.

At a high level, the tool takes a list of the service’s source files
and a list of leaf library functions3 representing a new context-
aware API (in our running example from Listing 1 these would be
calls to the database engine). The tool then builds a call graph for
the service’s code, discovers the call paths from the service’s entry
points (e.g., a handler serving incoming upstream requests) to the
leaf functions, and finally injects context as the first parameter to
all relevant function definitions and function calls. The intention is
to use the tool whenever a new context-aware API is introduced, as
this may lead to discovering additional call paths where a context
parameter is not yet propagated.

On the surface, building such a tool may appear deceptively
simple, but as usual the devil is in the details, and in the remainder
of this paper we will discuss how Go language features have guided
the design and implementation decisions behind an automated code
transformation tool that can eliminate the majority of grunt work
necessary to propagate context through the code of real production
services. In particular, the paper makes the following contributions:

• We present an overview of our tool’s design and implemen-
tation which utilizes the support available within the Go
core toolchain to write static analysis tooling.

• We describe challenges with handling certain Go language
features (e.g., interfaces, first-class functions) in the context
of automated context propagation and discuss how our tool
manages to overcome them.

• We discuss limitations of the tool and, since our tool is “best
effort”, the kinds of manual changes that may be required
after the automated transformation is completed, so that the
modified context-aware service code builds correctly and is
capable of passing all the original tests.

• We evaluate the effectiveness of our tool based on a set of
17 production services demonstrating that it can on average
eliminate 94% or more of the manual work necessary to
implement context propagation for existing services. As part
of our evaluation we also discuss how important it is to
automatically handle specific Go language features.

The tool’s code has been open-sourced and made available at
https://github.com/uber-research/go-context-propagate.

3The Go language features both functions and methods, but due to their similarity in
the remainder of this paper we will use the term “function” to describe both actual
functions and methods, unless explicitly stated – please see Section 3.2 for more details
on a distinction between a function and a method in Go.
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2 OVERVIEW
In this section we describe the tool itself, the kind of code trans-
formation it supports and how it is configured, as well as present
an overview of its design and implementation. In all the exam-
ples (throughout the whole paper) context is encapsulated by the
Context type provided in Go’s context package [11], but in gen-
eral any type can be used to represent context (it is part of the tool’s
configuration as described in Section 2.2).

2.1 Code Transformation
The first transformation of the service’s code that the tool helps to
accomplish, is to replace calls to non-context-aware (i.e., without
the context argument) leaf library functions (see Section 1 for addi-
tional explanation) with the context-aware ones by introducing an
additional context argument (at an arbitrary position) to a given
existing call, and optionally renaming the function to be called. The
tool also automatically discovers all call paths from the service’s en-
try point(s) to the freshly introduced context-aware function calls.
This is accomplished in the bottom-up fashion – the tool starts with
the leaf functions and keeps transitively discovering their callers
until either reaching a caller that already has a parameter of appro-
priate type in the right position, or until reaching the top of every
call path for a given leaf function. Then the tool transforms all calls
on these paths (and respective function definitions) to receive an
additional context parameter.

For example, consider the following code fragment where the
library function lib.baz is to be replaced with its context-aware
equivalent lib.ctxBaz:

func foo(p bool) bool {

return bar(p)

}

func bar(p bool) bool {

return lib.baz(p)

}

The tool would transform this piece code into the following one
(relevant changes in bold):

func foo(ctx context.Context, p bool) bool {

return bar(ctx, p)

}

func bar(ctx context.Context, p bool) bool {

return lib.ctxBaz(ctx, p)

}

As we can see, a call to lib.baz was changed to a call to
lib.ctxBaz and the signature of lib.ctxBaz’s caller (function
bar) was changed to include an additional context parameter. Fi-
nally, the signature of bar’s caller and the call to function bar itself
were similarly modified.

Based on this simple example, building this type of code trans-
formation tool seems like an easy task, but in reality it was quite
challenging – in the following parts of the paper we will outline
both the difficulties we had to face and the solutions we developed.

2.2 Configuration
The tool is configured using a JSON file containing information
required to drive the code transformation. The simplest config file,
describing the transformation example presented in Section 2.1
looks as follows:
{

"CtxPkgPath" : "context",
"CtxPkgName" : "context",
"CtxParamName": "ctx",
"CtxParamType": "Context",
"LibPkgPath" : "lib",
"LibPkgName" : "lib",
"LibFns" : [{"Name": "baz",

"NewName": "ctxBaz"}],
"LoadPaths" : ["app"]

}

The meaning of the fields in this file is as follows:
• CtxPkgPath and CtxPkgName – path and name of the pack-
age where context type is defined

• CtxParamName – name of the context parameter, used both
as parameter for modified function definitions and as an
argument for modified function calls

• CtxParamType – name of the context type
• LibPkgPath and LibPkgName – path and name of the pack-
age defining the leaf library functions

• LibFns – an array of leaf function specifications4 where a
specification includes a given function’s unique per-package
name (Name field) and an optional field NewName for cases
when function renaming is required

• LoadPaths – a list of paths where the service’s code resides,
relative to the GOPATH [14] variable pointing to the service’s
development workspace

The JSON config file is the only input to the tool, but it is assumed
that all dependencies of the service being transformed (e.g., external
packages it uses) are available to the tool (i.e., they are available
on the GOPATH) as all sources of a given service need to be type-
checked before the transformation itself can take place.

2.3 Design and Implementation
In this section we present an overview of our tool’s design and
implementation – additional implementation details concerning
specific Go language features are described in Section 3.

2.3.1 Design. We took a very pragmatic approach to designing
this tool. Since the tool needs to find call paths from the service’s
entry points to the leaf calls, by definition it needs to analyze the
program inter-procedurally. At the same time, we decided to try
avoiding expensive whole program analyses and algorithms, such
as data-flow analysis, partially because we needed the tool to work
on sizeable code bases and partially because we felt like these may
be only partially effective for a code transformation in the static
setting (e.g., certain data flows can only be precisely identified at
runtime as they depend on decisions made at runtime). In other
words, we tried to strike the right balance between the complexity of

4Specification of leaf methods is also supported, but we omit it for brevity.
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the tool that influences transformation times and the effectiveness
of the tool in reducing the amount of grunt work needed to make
services context-aware.

Ultimately, our main focus ended up being on the control flow
analysis and the ability to iterate over and inspect certain language
constructs (e.g., globally defined types, functions, etc.). This helped
us keep the transformation times low and make the tool quite ef-
fective. The code transformation supported by the tool is, however,
“best-effort” – we say that the transformation process is automated,
rather than saying it is (fully) automatic, as due to the static na-
ture of the analyses it uses (e.g., statically constructed call graph
algorithm) the tool sometimes generates code that requires manual
intervention to correct it. Of course, the goal is to minimize the
amount of manual code changes that are required – please see Sec-
tion 4 for a description of the tool’s limitations and Section 5 for
the details of the tool’s evaluation.

The workflow including optional manual modifications is sup-
ported by the intended deploymentmodel for the tool – transformed
version of the code is compared with the original one to create a
set of diffs submitted to the code review system where they can be
further modified. Even if manual intervention is not necessary, this
allows for the final verification of the modified code by the service
developers before it is used in production.

Our second design goal was to make the tool relatively simple
to use by automating as much of the code transformation process
as possible. Upon encountering a more problematic situation (e.g.,
having to deal with third-party code), the tool attempts to make an
educated guess on what the correct action should be and informs
the developers about the decision it made, so that the code can be
altered manually if need be – please see Section 4.2 for a description
of the tool’s heuristics.

2.3.2 Implementation. The code transformation process consists
of two phases: analysis and transformation. The implementation
utilizes support for building static analysis tools coming with the
Go language itself in the form of several utility packages.

The analysis phase consists of the following steps:

• loading source code and translating it to abstract syntax trees
(ASTs) – with the help of the go/packages package

• translating the ASTs to the SSA form [2] – with the help of
the golang.org/x/tools/go/ssa/ssautil package

• type-checking and inspecting the SSA form – with the help
of the golang.org/x/tools/go/ssa package

• creating a call graph (nodes representing functions and edges
representing function calls) from the SSA form – with the
help of the golang.org/x/tools/go/callgraph package
utilizing the Rapid Type Analysis (RTA) algorithm provided
by the golang.org/x/tools/go/callgraph/rta package

• traversing the call graph bottom up, starting with the leaf
calls, to identify and record portions of the service’s code (i.e.,
function signatures, call sites, data types, etc.) that need to be
modified to support context propagation – this is where the
“core” transformation logic is implemented (see Section 3)

The transformation phase consists of of the following steps:

• traversing and modifying the ASTs according to the infor-
mation collected during the analysis phase – with the help
of the golang.org/x/tools/go/ast/astutil package

• transforming ASTs back to the source code with the out-
put formatted using the algorithm of the go format com-
mand [5] – with the help of the go/format package

One of the important parts of the core transformation logic
implemented as the last step of the analysis phase was handling Go
language features beyond function calls and definitions – we will
discuss the details in the next section.

3 HANDLING GO LANGUAGE FEATURES
Despite its similarity to C, Go language features extend beyond
simple C-like statements and function calls, and include first-class
functions, interfaces, import statements, etc. A code transforma-
tion tool that aims to work with real-life programs should at least
attempt to handle these features or risk increasing manual effort
required to implement a given transformation. As we will see in
the following parts of this section, modifying function definitions
to alter their signatures may have a profound effect on these other
Go language constructs.

3.1 First-class Functions
Functions are first-class constructs in Go and a given function
can be called directly or, just like in the example below, using a
function-type parameter (please assume that baz is a leaf library
function):

func foo(p bool) bool {

return bar(p, qux)

}

func bar(p bool, f func() bool) bool {

return f()

}

func qux(p bool) bool {

return lib.baz(p)

}

In order to correctly transform the code fragment above, we
not only have to add a context parameter to all relevant function
definitions and call sites (as described in Section 2.1), but alsomodify
the parameter type used to pass function qux to bar in foo:

func foo(ctx context.Context, p bool) bool {

return bar(ctx, p, qux)

}

func bar(ctx context.Context, p bool,

f func(context.Context) bool) bool {

return f(ctx)

}

func qux(ctx context.Context, p bool) bool {

return lib.ctxBaz(ctx, p)

}
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In order to support this transformation, the tool must inspect
definitions of all functions5 to discover and modify function-type
parameters, in addition to traversing the call graph to identify all call
paths for context propagation. A similar, though more complicated
strategy has to be applied to correctly handle Go interfaces.

3.2 Interfaces
Interfaces in Go serve a similar role as in other popular program-
ming languages (e.g., Java) – they declare a set of method signatures
defining the behavior of a certain entity abstracted by the interface.
A method in Go is similar to a Go function, but its signature in
addition to the name and parameters, also specifies this method’s
receiver type, which describes a concrete entity whose behavior
this particular method defines. In the following code fragment, we
define method qux with the receiver type Entity6 and we say that
qux is in the method set of Entity7 (again, please assume that baz
is a leaf library function):

type Entity struct {}

func (Entity) qux(p bool) bool {

return lib.baz(p)

}

An interface in Go specifies its own method set by declaring
method signatures. In the following code fragment we define inter-
face AbstractEntity declaring a single method qux:

type AbstractEntity interface {

qux(p bool) bool

}

In Go, the “implements” relationship between receiver types and
interfaces is implicit - a receiver type implements an interface if its
method set is a super-set of the method set declared by the inter-
face. Consequently, in the example above, type Entity implements
interface AbstractEntity.

Since methods and interfaces may form the “implements” re-
lationship, when changing the signature of the former, the tool
may have to change the definition of the latter - in the example
above, if a call to lib.baz is changed to call this function’s context-
aware equivalent, the tool not only has to add context parameter
to method qux, but also modify declaration of qux inside interface
AbstractEntity. Otherwise type Entity will no longer imple-
ment AbstractEntity. The resulting transformed code fragment
looks as follows (definition of type Entity remains unchanged):

func (Entity) qux(ctx context.Context,

p bool) bool {

return lib.ctxBaz(ctx, p)

}

type AbstractEntity interface {

qux(ctx context.Context, p bool) bool

}

5Iteration over all functions of a given service is supported by the
golang.org/x/tools/go/callgraph package
6We define type Entity as an empty structure for brevity.
7There may be more methods with the same receiver type.

After this transformation is completed, however, there may be
other methods that implement the modified interface but that do
not use, and thus do not require, an additional context argument.
Still, their signatures must be updated to “match” definitions of the
modified interfaces.

3.2.1 Matching Modified Interfaces. Unconditionally changing sig-
natures of all methods whose receiver type implements a given
interface would certainly solve the problem, but it is likely unnec-
essary as we only need to modify methods that are actually called
using this interface (some of the “implements” relationships, due
to their implicit nature, may be unintentional). Continuing with
the previous example, let us introduce another qux method with a
different receiver type and a polymorphic call site:
type OtherEntity struct {}

func (OtherEntity) qux(p bool) bool {

return p

}

func main() {

v := OtherEntity{}

v.qux(true)

}

In this extended example, type OtherEntity also implements in-
terface AbstractEntity, necessitating modification of new qux’s
signature. However, since the new qux method does not actually
use context, the tool special-cases transformation of its signature
and of its call site in the main function:

• it inserts an additional parameter to qux with the blank
identifier (i.e., _) instead of a specific name to indicate that
the parameter value will never be used

• it inserts “invalid” (or, in other words, “artificial”) context
as an argument at the call site – its value is specified in the
JSON config file in the CtxParamInvalid field that must
contain a valid Go expression (e.g., a function call)

The resulting transformed code fragment looks as follows (“in-
valid” context is specified as a call to the Background function
of the context package, and the definition of type OtherEntity
remains unchanged):
func (OtherEntity) qux(_ context.Context,

p bool) bool {

return p

}

func main() {

v := OtherEntity{}

v.qux(context.Background(), true)

}

Belowwe describe the algorithmused to find and updatemethods
that need to be modified.

3.2.2 Algorithm. Technically, we could analyze the entirety of the
service’s source code, find all polymorphic call sites where the
tool injects an additional context argument, discover definitions
of methods that can be called at these call sites, and finally update
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signatures of all the discovered methods. This type of algorithm
would likely be costly and possibly unnecessary considering the
typical use of polymorphic calls, at least in the source code of the
services existing at our company. We observe that an interface is
typically used as a parameter to a function which in turn makes a
polymorphic call using this interface. A typical scenario here is for
an interface to be implemented by the code running in production
and by the “mock” code created (often auto-generated) for testing
purposes. As a result, we find a simpler algorithm, requiring analysis
of only a small portion of the source code, to be quite effective –
instead of finding interfaces to match by looking for all polymorphic
call sites, find the relevant interfaces by looking for interface-typed
function parameters.

Here is a more detailed description of the algorithm:
(1) During the call graph traversal record interfaces that will be

eventually modified as a result of injecting a context param-
eter to the method’s signature.8 In addition to remembering
the set of interfaces, also remember which methods will be
modified in each interface.

(2) After the graph traversal is finished, iterate over all functions
in the program and record all functions with a parameter
whose type is in the modified interfaces set that has been
recorded in step 1. In addition to remembering the func-
tion itself, remember which parameter matches one of the
modified interface types.

(3) For all functions found in step 2, find their call sites and
record the value of an argument at the call site that matches
the position of the parameter recorded in step 2 – this ar-
gument value can be used to identify and record a receiver
type passed as an argument (matching a given interface-type
parameter).

(4) For all receiver types recorded in step 3:
(a) Modify the signature of methods in the methods set of

a given receiver type (matching those modified in the
interface this receiver type implements, as recorded in
step 1) to take a context parameter

(b) At all call sites for methods with modified signatures pass
“invalid” context as the first argument.

We acknowledge that this algorithm is tailored to work well with
a specific interface usage pattern. However, this pattern is not only
popular across multiple services developed by different developers
at our company, but more broadly it is also documented [3] as
a well-known solution used in some of the most popular open-
source Go mocking frameworks, such as gomock [10]. This makes
us believe in this pattern’s generality but alternatives, such as the
more expensive one described earlier in this section, can clearly be
considered as well if need be.

3.3 Import Statements
If the tool changes a signature of a function in a given file to include
an additional context parameter, in order for this file to successfully
compile afterwards it needs to contain an import statement for the
package where the context type is defined. If such context package
import statement is not present, the tool will inject it automatically.
8Checking if a given receiver type implements a given interface is supported by
go/types “standard” package

In particular, considering the example in Section 2.1, the tool would
inject a context package import statement for package context (the
CtxPkgPath field in the config file determines this package’s path as
described in Section 2.2). The tool is also smart enough to recognize
a situation when an optional package alias is specified as part of
the existing context package import, and will use this alias instead
of the package name specified in the config file (CtxPkgName field).
An existing import may, however, also refer to a different package
with the same name as the one specified in the config file. In this
case, a developer has an opportunity to define a globally unique
alias to avoid the name clash - it is specified using the CtxPkgAlias
field in the config file.

Before describing the second type of injected import statements
we need to introduce the notion of context expressions.

3.3.1 Context Expressions. In the original example (Section 2.1) we
have a “raw” context value passed to function lib.ctxBaz, but in
some cases it may be necessary to pass a context expression instead,
that is an expression that somehow utilizes the context (e.g., as an
argument to a function call). For example consider the following
extension to the example from Section 2.1:
func bam(p bool) bool {

return lib.bazExp(p)

}

Assume that we want to transform this code fragment to replace
a call to lib.bazExp with a call to its context-aware equivalent
lib.ctxBazExp taking as an argument the following context ex-
pression: other_lib.setTimeout(ctx, 1000) (the actual seman-
tics of the expression is irrelevant for the example, beyond the fact
that the function call it contains is defined in package other_lib).
The resulting code would look as follows:
func bam(ctx context.Context, p bool) bool {

return lib.ctxBazExp(

other_lib.setTimeout(ctx, 1000), p)

}

In order to be successfully compiled, the transformed code frag-
ment needs to import the other_lib package. Both a context ex-
pression and optional context expression import statements can be
defined in the config file as part of the leaf function specification
in the LibFns array (see Section 2.2 for description). Similarly to
the context package import statement injection described above, a
context expression import statement can be optionally aliased to
avoid name clashes. The complete leaf function specification for the
Section 2.1 example extended to accommodate function bam looks
as follows, where some_dir is other_lib’s package path (Name
field) and other_lib is the optional alias (Alias field) 9:
"LibFns" :
[{ "Name": "baz", "NewName": "ctxBaz" },
{

"Name": "bazExp",
"NewName": "ctxBazExp",
"CtxImports": [{"Import": "some_dir",

"Alias": "other_lib"}]
}]

9The rest of the config file remains unchanged.
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To summarize, considering the extended example, the actual
import statements injected into the file where none previously
existed would be as follows:
import "context"

import other_lib "some_dir"

One could consider injecting import statements using another
simpler tool. Please note, however, that an import cannot be in-
jected “blindly” – one has to consider per-file aliasing implications
described above and the injection must happen only if the import
statement is needed by the code in the modified file, otherwise
the Go compiler will complain about the import statement being
superfluous.

4 LIMITATIONS
In this section, we describe issues that the tool, being “best-effort”,
cannot currently handle, and which require manual intervention
on the developer’s side. We also discuss some heuristics that the
tool uses when encountering some more problematic situations
and how these are communicated to the developer. Please note that
fixes for a lot of issues requiring manual correction are relatively
easy to perform as they only require inspection of a single function.

4.1 Manual Corrections
In this section we describe situations when, after the automated
code transformation is completed, selected manual modifications
to the service’s code are required to have it built and run correctly.

4.1.1 Spurious Context Injections. No static call graph construction
algorithm is 100% accurate (e.g., due to reflective calls that cannot
be discovered statically). In particular, the resulting call graph may
contain an edge from a function definition to a call site, particularly
a polymorphic call site, even if this function is never called at this
call site. In such cases, the tool would inject a context parameter
at this call site and the resulting code would fail compilation. This
has to be rectified by the developer – the context argument must
be removed.

4.1.2 Variadic Signatures. The tool can place a context argument
(or a context expression argument – see Section 2.2 for explanation)
for a given leaf call at an arbitrary argument position – if undefined
in the leaf function specification portion of the config file (ArgPos
optional field), it defaults to the first argument. This poses a certain
problem for variadic signatures (i.e., signatures of functions that
take a variable number of arguments) – they are handled correctly
if arguments are specified one-by-one at the call site, but not if a
variadic argument is passed as an array (both argument passing
methods are valid in Go [15]). Technically the tool could handle
this, at least partially (e.g., automatically handle argument injection
at the first or last position), but the manual fix is typically very
straightforward and results in nicer code than what would be auto-
generated in this case – we often observe an argument array being
constructed right before the call, which is a natural place to inject
an additional argument, but it is difficult to handle such injection
automatically in the general case.

4.1.3 Return Values. At this point, the tool does not modify a re-
turn type even if what is returned is a function and this function’s

signature has been modified to take an additional context parame-
ter. It is non-trivial to auto-generate code for this situation in the
general case (e.g., not all return statements necessarily return a
function with modified signature), but is conceivable to support it
in the future if the real need arises, possibly in a limited fashion.

4.1.4 Reflection. Similarly to many other code transformation
tools relying on static analysis, our tool does not handle reflec-
tion. For example, functions in Go can be looked up using their
names stored in arrays, which in the general case makes it difficult
to discover which function is being used at a reflective call site.

4.2 Heuristics
In this section we describe some heuristics that the tool uses when
encountering some more problematic situations. The decisions
made by the tool are subject to the developer’s verification – the
tool can generate an appropriate description including a file name
and a line number in the JSON format to be post-processed for
integration with the development workflow (in particular, we post
this information as inline comments in our code review system).

4.2.1 Third-party Code. The code of any given service often uses
external libraries whose code can be accessed for analysis purposes
but cannot be easily modified. This has consequences on what
kinds of modifications are allowed in the actual service’s code. In
particular, since functions in Go are first-class and can be used as
parameters, they may be passed as arguments to functions defined
by the third-party code. Similarly, the receiver type of a method in
the service’s code may implement an interface defined by the third-
party code. In both cases, if the function/method is identified by the
tool as one requiring an additional context parameter, its signature
cannot be modified since, in the general case, the third-party code
cannot be modified either. The tool handles this by injecting a local
“invalid” context (see Section 3.2.1 for description) variable at the
beginning of the function/method instead of injecting a context
parameter into the signature.

4.2.2 Alternative Entry Points. The main entry point to the ser-
vice’s code is a request handler accepting requests from upstream
services. Typically, it is the handler that provides context to be prop-
agated throughout the service’s code as part of the data coming
from the upstream. The tool finds the call paths requiring context
by starting with the leaf functions and discovering the transitive
callers of these functions until the request handler is reached. How-
ever, the request handler does not have to be the only entry point
to the service. In particular, an init function used for package
initialization [13] or test functions executed by the test harness can
constitute alternative entry points. In these types of situations, con-
text is typically not available and, similarly to Section 4.2.1 above,
the tool inserts “invalid” context variable to be used for subsequent
function calls.

4.2.3 Function Containers. Functions in Go are first-class con-
structs and can be stored in containers – in particular, they can
be array elements and can also be used as both keys and values in
maps. Changing signatures of such functions to accommodate an
additional context parameter would cause a compilation error as
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the container types and the function types would no longer match.
There are two solutions to this issue:

(1) Avoid changing signatures of such functions by injecting
a local variable defining “invalid” context to be used for
subsequent calls

(2) Inject a context parameter to all functions that can be used
by any container and change type of the containers

If a service stores a lot of functions in containers, tracking all such
functions to implement either solution manually could be tedious.
As a convenience, the tool supports solution 1 above as part of the
automated transformation, and injects an “invalid” context variable
to all functions whose signatures match the types used by any of
the containers. This is similar to the tool’s handling of methods
implementing already modified interfaces (see Section 3.2.1) but
is considered a heuristic as there are at least two valid methods of
solving this issue.

5 EVALUATION
The main goal of the experimental evaluation was to determine the
effectiveness of the tool using some measure of how much of the
manual effort otherwise required to implement the context prop-
agation transformation could be eliminated when using the tool.
Additionally, we wanted to gain an insight into how important it is
to support various Go language features we described in Section 3.

5.1 Setup
Performing a user case study was beyond the scope of this paper,
instead in our evaluation we use rather simple metrics that we
believe nevertheless give at least an idea of how effective the tool
is compared to doing the code transformation fully manually. The
main metric is a ratio of the number of LOCs (lines of code) that
the developer had to modify manually after the automated code
transformation was completed (if any – otherwise zero lines had
to be manually modified) to the total number of LOCs that had
to be changed (including both the code automatically modified by
the tool and optional manual developer changes) for the service to
compile and pass all tests – see Section 5.2.1 for the description of
this main result.

The API we are making context-aware in our evaluation is the
logging API defined in the popular open-source zap package [28].
An internal package developed in our company provides a func-
tion that can be used to form a context expression passed to the
logging calls of the zap package. The internal package is not yet
open-sourced but neither its implementation nor the content of
the context expression have any bearing on this evaluation – the
only relevant part is the description of which calls to zap package’s
logging methods are being transformed and what is the position
where the context expression is injected:

• receiver type Logger: DPanic, Debug, Fatal, Info, Panic, Warn
(second position), Error (last position)

• receiver type SugaredLogger: DPanic, DPanicf, DPanicw,
Debug, Debugf, Debugw, Error, Errorf, Errorw, Fatal, Fatalf,
Fatalw, Info, Infof, Infow, Panic, Panicf, Panicw,Warn,Warnf,
Warnw (last position)

Table 1: Services statistics and code transformation effort re-
sults

LOC LEAF AUT AUT MAN MAN
add rm add rm

s1 643339 733 895 747 0 0
s2 568572 100 211 188 2 2
s3 478560 133 1160 995 8 8
s4 460850 135 182 163 3 3
s5 360307 65 132 124 1 1
s6 287504 325 725 630 10 12
s7 194139 10 52 35 0 0
s8 101345 79 381 279 12 15
s9 67794 12 24 19 0 0
s10 46324 52 140 114 8 8
s11 14883 148 244 219 0 0
s12 13570 27 77 74 0 0
s13 11894 13 124 95 1 1
s14 11315 77 208 200 104 57
s15 10407 51 66 51 0 0
s16 8108 35 153 130 19 16
s17 4176 23 25 23 0 0

We ran the tool on a standard development machine (MacBook
Pro, 6 2.6GHz Intel i7 cores, 32GB RAM, macOS Mojave 10.14.6).

5.2 Results
Wehave evaluated our approach on the set of 17 production services.
We use artificial identifiers (s1, s2, etc.) to differentiate between
them as these are proprietary services used within our company.
The code of these services varies in size and in the number of the leaf
API calls that are used as starting points for context propagation,
as described in the first 2 columns in Table 1, which is sorted in
the order of the number of lines of code (LOCs). The numbers in
the LOC column of the table have been obtained using the cloc
command 10 and reflect actual code implementing the logic of the
service (blank lines and comments are excluded). As we can see,
some of the services are quite large, revolving around half a million
lines of code. The number of leaf calls is presented in the LEAF
column in Table 1.

The code transformation times did not play a significant role in
this experiment as the whole automated transformation process
takes less than 18s on average (averaged over 10 runs) for the largest
service we transformed (s1).

5.2.1 Transformation Effort. The main result of the evaluation is
presented in Figure 2, where we compare the number of manual
changes to the number of total changes required to transform a
service to the point when it builds and passes all its original tests.
We present two ratios computed by comparing diff files representing
the automated changes and the following optional manual changes
– the left bar for each service is for the ratio of lines added and the
right bar is for the ratio of lines removed (as computed using the
diffstat command 11).

10https://linux.die.net/man/1/cloc
11https://linux.die.net/man/1/diffstat
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Figure 2: Ratio of manual to all (automated + manual) changes.

Table 2: Code transformation results (language features)

SIG CALL PRM INT MET IMP
mod mod mod mod mod add

s1 3 744 0 0 0 95
s2 13 135 0 0 0 56
s3 157 715 0 9 23 135
s4 1 136 0 0 0 45
s5 10 84 0 2 4 22
s6 45 495 1 8 8 135
s7 7 28 0 0 0 12
s8 65 189 0 5 9 58
s9 2 14 0 0 0 8
s10 17 88 0 0 0 24
s11 20 179 0 2 2 24
s12 3 71 0 0 0 2
s13 19 77 0 0 0 9
s14 14 113 0 1 1 21
s15 0 51 0 0 0 11
s16 25 90 0 2 2 20
s17 0 23 0 0 0 2

In terms of the arithmetic mean (AVG bars in Figure 2), for both
lines added and removed the ratio of the number of manual changes
to the number of total changes is at most 0.6. Consequently, accord-
ing to this metric, the average amount of manual effort required is
at most 6% of the total effort that would be required to transform the
service. The result is even better when considering the geometric
mean (GEO bars in Figure 2) – the ratios for both lines added and
removed equal 0.3. Please also note that over 1/3rd of all services,
including some really large ones (e.g., s1 in Table 1), did not require
any additional changes after being transformed by the tool. When
computing both means, we have excluded services which did not
require any manual changes to avoid skewing the result.

We fully understand that the metric we use is simple, and we do
not claim these numbers as a “hard” result, but we do believe that
even this metric gives a strong indication that the tool is capable of

significantly reducing the amount of effort required to transform
production service code.

The “raw” numbers indicating the effectiveness of the tool are
presented in the last 4 columns in Table 1: the number of lines added
and removed according to the diffs representing auto-generated
changes (AUT add andAUT rm columns) and the number of lines
added and removed according to the diffs representing changes
implemented manually by the developer (MAN add and MAN
rm columns). Another way of looking at these numbers is that
columns AUT add andMAN add represent the number of service
code line modifications (every line removal in a diff file is matched
with an addition, but not vice versa), and the number of service
code line additions is represented by subtracting numbers in the
“rm” columns from number in the “add” columns. Comparing the
total number of automatic modifications with the total number of
manual modifications yields an additional effectiveness metric of
the tool – 4 manual code line modifications were needed per 100
automatically modified lines of code.

As we can see, it is not uncommon for a service to require hun-
dreds of lines of code to change, and making that many changes
by-hand could be really tedious. Admittedly, some relatively large
services require changes only in the order of tens of lines of code
(e.g. s7), but then all the services in this case study that required
less than 100 lines of code to change were transformed by the tool
fully automatically, without requiring any manual intervention.

5.2.2 Manual Changes. Among all services used for the experi-
mental evaluation, we needed to manually correct (see Section 4.1
for details) 77 cases of spurious context injections, 18 variadic sig-
natures, and 4 return values of a function type (no issues related to
reflection that required a manual intervention were discovered). A
significant number of manual corrections, combined with an overall
small total number of modifications, created two main outliers in
Figure 2: s14 (mainly due to manual variadic signature corrections)
and s16 (mainly due to manually correcting return values of a func-
tion type). All required manual corrections were signaled by the
compiler (as failed builds) and were therefore relatively easy to
perform – in terms of subjective difficulty levels (details omitted
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for brevity), the most trivial issues to address were related to vari-
adic signature, followed by spurious context injections, followed
by return values of a function type.

5.2.3 Language Features. The first two columns in Table 2 describe
howmany automatic modifications to function signatures and func-
tion calls were performed, and in the remaining columns we report
on howmanymodifications were due to handling language features
as described in Section 3:

• SIG mod - number of modified function signatures
• CALL mod - number of modified call sites
• PRMmod - number of modified function-type parameters
• INT mod and MET mod - number of modified interfaces
and number of modified methods within these interfaces

• IMP add - number of added import statements
In terms of “obvious” modifications, as we can see, we have on

average tens of function signatures modified, with the maximum
number reaching over 150 modifications (s3). At the same time, the
number of modified calls is almost an order of magnitude higher,
reaching over 700 modifications (s1 and s3). Interestingly, for some
services (s15 and s17), we see no function signatures modified
and yet we see modifications to function calls. This is because the
latter number includes calls to the leaf functions – these services
simply already have context of appropriate type propagated on all
required call paths and the only action that the tool had to take was
to inject the context expression to the leaf calls. As you can see, for
these services the number of leaf calls in Table 1 is the same as the
number of modified calls in Table 2 (the remaining changes are due
to auto-injecting import statements). While it is not inconceivable
to manually modify hundreds of function signatures and calls for a
single service, we believe that even with the help of modern IDEs
this would not easily scale to a large number of services.

In terms of the Go language features that the tool supports, we
can see that a certain non-trivial number of interfaces and interface
methods had to be modified, at least for some services (INT mod
andMET mod columns in Table 2). The most demanding service
here is s3 with 9 interfaces and 23 interface methods modified.

The tool also automatically injects import statements if and only
if it is necessary (see Section 3.3 for the explanation) – it is often
required to insert tens, and sometimes even hundreds of them (IMP
add column in Table 2). On the other hand, at least for the services
in our case study, we only very occasionally see a function-type
parameter that needs to be modified (PRMmod column in Table 2).
In summary, it seems like automatically handling interface modi-
fications and import injections was quite important, but handling
function-type parameters, while still useful, significantly less so.

6 RELATEDWORK
In terms of comprehensive solutions for Go services context prop-
agation problem, the only alternatives to using a code rewriting
tool such as ours involve “mimicking” goroutine-local storage and
using it to store context. There are at least a few projects [6, 22, 25]
supporting this type of solution and they all work similarly. The
main idea is to somehow (e.g., by using undocumented language
features or stack manipulation and traversal) obtain a per-goroutine
identifier and use it as a key to a map. These types of solutions,
however, tend to be brittle and can have unforeseen performance

consequences, plus assigning goroutines unique identifiers goes
against recommended Go programming practices [12].

With respect to the code transformation and refactoring tools,
the body of work covering different techniques for different pro-
gramming languages is too large to cite, with separate books [4]
and surveys [20] covering only portions of the work done in this
area. However, as far as we can tell, no existing tool supports con-
text propagation as a single end-to-end transformation. A partial
support for selected analyses or code rewriting tasks that can help
with context propagation does exist, but not necessarily for Go.

In particular, some IDEs supporting C# (but not Go) development
(e.g., Rider[19]) provide the Introduce Parameter refactoring [18].
This refactoring supports “lifting” an arbitrary expression from
the callee’s body to its callers, where it is used as an additional
argument passed to the callee. Similarly to the context propagation
transformation, this involves automatically injecting a parameter
at all the call sites and to the signature of the callee. The refactoring
is also powerful enough to modify relevant interfaces if necessary,
similarly to how the context propagation transformation does it
(see Section 3.2). However, in C# the “implements” relationship is
explicit in the type system which simplifies implementation of the
refactoring. Additionally, this refactoring works on a single method
definition at a time, which could result in hundreds of separate
modifications. Finally, it requires the code to be correctly typed at
each step, which does not hold for context propagation (a “lifted”
context argument is undefined in the caller until the subsequent
refactoring step is completed).

Generally speaking, Go is a relatively new language with a some-
what limited tooling support. In particular, existing code rewriting
tools (e.g., eg [7], gofmt [8], gorename [9]) support general but sim-
ple code modifications largely based on pattern matching. Conse-
quently, no existing tooling can assist a developer in implementing
context propagation with the same or similar effectiveness to our
code transformation tool. However, developers are not completely
on their own when rewriting code to support context propagation
as they can at least take advantage of code navigation and editing
capabilities of modern IDEs. For example, GoLand [17], one of the
most popular IDEs for Go, supports discovery of a given function’s
callers and of the “implements” relationship between receiver types
and interfaces. This can partially simplify identification of the code
fragments that need to be modified, but the manual effort involved,
particularly for large change sets, can still be overwhelming.

7 CONCLUSIONS
In this paper we tried to provide an insight into the design and im-
plementation of a practical static code transformation tool that is ca-
pable of significantly reducing the amount of manual effort required
for implementing context propagation for real-life production ser-
vices. We have presented results of the tool’s evaluation supporting
our claims about its effectiveness, discussed its limitations, and high-
lighted usefulness of automatically handling selected Go language
features. The tool’s code has been open-sourced and is available at
https://github.com/uber-research/go-context-propagate. Last but
not least, we would like to thank everyone that contributed to this
work, with a special thanks to Lazaro Clapp.
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