
Transparently Reconciling Transactions with Locking
for Java Synchronization

Adam Welc, Antony L. Hosking, and Suresh Jagannathan

Department of Computer Science
Purdue University

West Lafayette, IN 47907, USA
{welc, hosking, suresh}@cs.purdue.edu

Abstract. Concurrent data accesses in high-level languages like Java and C# are
typically mediated using mutual-exclusion locks. Threads use locks to guard the
operations performed while the lock is held, so that the lock’s guarded operations
can never be interleaved with operations of other threads that are guarded by the
same lock. This way both atomicity and isolation properties of a thread’s guarded
operations are enforced. Recent proposals recognize that these properties can also
be enforced by concurrency control protocols that avoid well-known problems
associated with locking, by transplanting notions of transactions found in data-
base systems to a programming language context. While higher-level than locks,
software transactions incur significant implementation overhead. This overhead
cannot be easily masked when there is little contention on the operations being
guarded.

We show how mutual-exclusion locks and transactions can be reconciled trans-
parently within Java’s monitor abstraction. We have implemented monitors for
Java that execute using locks when contention is low and switch over to trans-
actions when concurrent attempts to enter the monitor are detected. We formally
argue the correctness of our solution with respect to Java’s execution semantics
and provide a detailed performance evaluation for different workloads and vary-
ing levels of contention. We demonstrate that our implementation has low over-
heads in the uncontended case (7% on average) and that significant performance
improvements (up to 3×) can be achieved from running contended monitors trans-
actionally.

1 Introduction

There has been much recent interest in new concurrency abstractions for high-level
languages like Java and C#. These efforts are motivated by the fact that concurrent
programming in such languages currently requires programmers to make careful use of
mutual-exclusion locks to mediate access to shared data. Threads use locks to guard
the operations performed while the lock is held, so that the lock’s guarded operations
can never be interleaved with operations of other threads that are guarded by the same
lock. Rather, threads attempting to execute a given guarded sequence of operations will
execute the entire sequence serially, without interruption, one thread at a time. In this
way, locks, when used properly, can enforce both atomicity of their guarded operations
(they execute as a single unit, without interruption by operations of other threads that

D. Thomas (Ed.): ECOOP 2006, LNCS 4067, pp. 148–173, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Transparently Reconciling Transactions with Locking 149

are guarded by the same lock), and isolation from the side-effects of all operations by
other threads guarded by the same lock.

Unfortunately, synchronizing threads using locks is notoriously difficult and error-
prone. Undersynchronizing leads to safety violations such as race conditions. Even
when there are no race conditions, it is still easy to mistakenly violate atomicity guar-
antees [14]. Oversynchronizing impedes concurrency, which can degrade performance
even to the point of deadlock. To improve concurrency, some languages provide lower-
level synchronization primitives such as shared (i.e., read-only) locks in addition to the
traditional mutual-exclusion (i.e., read-write) locks. Correctly using these lower-level
locking primitives requires even great care by programmers to understand thread inter-
actions on shared data.

Recent proposals recognize that properties such as atomicity and isolation can be
enforced by concurrency control protocols that avoid the problems of locking, by trans-
planting notions of transactions found in database systems to the programming lan-
guage context [17, 20, 36]. Concurrency control protocols ensure atomicity and isolation
of operations performed within a transaction while permitting concurrency by allowing
the operations of different transactions to be interleaved only if the resulting schedule
is serializable: the transactions (and their constituent operations) appear to execute in
some serial order. Any transaction that might violate serializability is aborted in mid-
execution, its effects are revoked, and it is retried. Atomicity is a powerful abstraction,
permitting programmers more easily to reason about the effects of concurrent programs
independently of arbitrary interleavings, while avoiding problems such as deadlock and
priority inversion. Moreover, transactions relieve programmers of the need for careful
(and error-prone) placement of locks such that concurrency is not unnecessarily im-
peded while correctness is maintained. Thus, transactions promote programmability by
reducing the burden on programmers to resolve the tension between fine-grained lock-
ing for performance and coarse-grained locking for correctness.

Meanwhile, there is comprehensive empirical evidence that programmers almost al-
ways use mutual-exclusion locks to enforce properties of atomicity and isolation [14].
Thus, making transaction-like concurrency abstractions available to programmers is
generating intense interest. Nevertheless, lock-based programs are unlikely to disap-
pear any time soon. Certainly, there is much legacy code (including widespread use of
standard libraries) that utilizes mutual-exclusion locks. Moreover, locks are extremely
efficient when contention for them is low – in many cases, acquiring/releasing an un-
contended lock is as cheap as setting/clearing a bit using atomic memory operations
such as compare-and-swap. In contrast, transactional concurrency control protocols re-
quire much more complicated tracking of operations performed within the transaction
as well as validation of those operations before the transaction can finish. Given that
transaction-based schemes impose such overheads, many programmers will continue to
program using exclusion locks, especially when the likelihood of contention is low. The
advantages of transactional execution (i.e., improved concurrency, deadlock-freedom)
accrue only when contention would otherwise impede concurrency and serializability
violations are low.

These tradeoffs argue for consideration of a hybrid approach, where existing con-
currency abstractions (such as Java’s monitors) used for atomicity and isolation can be

150 A. Welc, A.L. Hosking, and S. Jagannathan

mediated both by locks and transactions. In fact, whether threads entering a monitor
acquire a lock or execute transactionally, so long as the language-defined properties of
the monitor are enforced, all is well from the programmer’s perspective. Dynamically
choosing which style of execution to use based on observed contention for the monitor
permits the best of both worlds: low-cost locking when contention is low, and improved
concurrency using transactions when multiple threads attempt to execute concurrently
within the monitor.

Complicating this situation is the issue of nesting, which poses both semantic and
implementation difficulties. When a nested transaction completes, isolation semantics
for transactions mandate that its effects are not usually globally visible until the outer-
most transaction in which it runs successfully commits. Such nesting is referred to as
closed, and represents the purest expression of nested transactions as preserving atom-
icity and isolation of their effects. In contrast, Java monitors expressed as synchronized
methods/blocks reveal all prior effects upon exit, even if the synchronized execution
is nested inside another monitor. Obtaining a meaningful reconciliation of locks with
transactions requires addressing this issue.

Our Contribution
In this paper, we describe how locks and transactions can be transparently reconciled
within Java’s monitor abstraction. We have implemented monitors for Java that execute
using locks when contention is low and switch over to transactions when concurrent
attempts to enter the monitor are detected. Our implementation is for the Jikes Research
Virtual Machine (RVM). To our knowledge, ours is the first attempt to consider hybrid
execution of Java monitors using both mutual-exclusion and transactions within the
same program.

Our treatment is transparent to applications: programs continue to use the standard
Java synchronization primitives to express the usual constraints on concurrent execu-
tions. A synchronized method/block may execute transactionally even if it was previ-
ously executed using lock-based mutual exclusion, and vice versa. Transactional execu-
tion dynamically toggles back to mutual-exclusion whenever aborting a given transac-
tion becomes infeasible, such as at native method calls. In both cases, hybrid execution
does not violate Java semantics, and serves only to improve performance.

We make the following contributions:

1. The design and implementation of a Java run-time system that supports imple-
mentation of Java monitors (i.e., synchronized methods/blocks) using both mutual-
exclusion and software transactions based on optimistic concurrency. A given mon-
itor will execute using either concurrency control mechanism depending on its con-
tention profile.

2. An efficient implementation of monitors as closed nested transactions. We intro-
duce a new mechanism called delegation that significantly reduces the overhead
of nested transactions when contention is low. Support for delegation is provided
through extensions to the virtual machine and run-time system.

3. A formal semantics that defines safety criteria under which mutual exclusion and
transactions can co-exist. We show that for programs that conform to prevalent
atomicity idioms, Java monitors can be realized using either transactions or mutual-

Transparently Reconciling Transactions with Locking 151

exclusion with no change in observable behavior. In this way, we resolve the appar-
ent mismatch in the visibility of the effects of Java monitors versus closed nested
transactions.

4. A detailed implementation study that quantifies the overheads of our approach. We
show that over a range of single-threaded benchmarks the overheads necessary to
support hybrid execution (i.e., read barriers, meta-data information on object head-
ers, etc.) is small, averaging less than 10%. We also present performance results on
a comprehensive synthetic benchmark that show how transactions that co-exist with
mutual-exclusion locks lead to clear run-time improvements over mutual-exclusion
only and transaction-only non-hybrid implementations.

2 A Core Language

To examine notions of safety with respect to transactions and mutual exclusion, we
define a two-tiered semantics for a simple dynamically-typed call-by value language
similar to Classic Java [16] extended with threads and synchronization. The first tier
describes how programs written in this calculus are evaluated to yield a schedule that
defines a sequence of possible thread interleavings, and a memory model that reflects
how and when updates to shared data performed by one thread are reflected in another.
The second tier defines constraints used to determine whether a schedule is safe based
on a specific interpretation of what it means to protect access to shared data; this tier
thus captures the behavior of specific concurrency control mechanisms.

Before describing the semantics, we first introduce the language informally (see Fig-
ure 1). In the following, we take metavariables L to range over class declarations, C to
range over class names, t to denote thread identifiers, M to range over methods, m to
range over method names, f and x to range over fields and parameters, respectively, �
to range over locations, and v to range over values. We use P for process terms, and e
for expressions.

SYNTAX:

P ::= (P | P) | t[e]
L ::= class C {f M}
M ::= m(x) { e }
e ::= x | � | this | e.f | e.f := e | new C()

| e.m(e) | let x = e in e end | guard {e} e
| spawn (e)

Fig. 1. A simple call-by-value object-based concurrent language

A program defines a collection of class definitions, and a collection of processes.
Classes are all uniquely named, and define a collection of instance fields and instance
methods which operate over these fields. Every method consists of an expression whose
value is returned as the result of a call to that method. Every class has a unique (nullary)
constructor to initialize object fields. Expressions can read the contents of a field, store a
new value into an instance field, create a new object, perform a method call, define local
bindings to enforce sequencing of actions, or guard the evaluation of a subexpression.

152 A. Welc, A.L. Hosking, and S. Jagannathan

To evaluate an expression of the form, guard{el} e, el is first evaluated to yield a
reference �; we refer to � as a monitor. A monitor acts as a locus of contention, and
mediates the execution of the guard body. When contention is restricted to a single
thread, the monitor behaves like a mutual exclusion lock. When contention generalizes
to several threads, the monitor helps to mediate the execution of these threads within
the guard body by enforcing serializability on their actions.

Mutual exclusion results when monitor contention is restricted to a single thread.
In contrast, transactions can be used to allow multiple threads to execute concurrently
within the same region. In this sense, a transaction defines the set of object and field
accesses made by a thread within a guarded region. When a thread exits a region, it
consults the monitor to determine if its transaction is serializable with the transactions of
other threads that have executed within the same region. If so, the transaction is allowed
to commit, and its accesses are available for the monitor to mediate the execution of
future transactions in this region; if not, the transaction aborts, and the thread must start
a new transaction for this region.

Since we are interested in transparently using either of these protocols, two obvious
questions arise: (1) when is it correct to have a program use mixed-mode execution for
its guarded regions; (2) when is it profitable to do so? We address the first question in
the following section, and the second in Section 5.

3 Semantics

The semantics of the language are given in Figure 2. A value is either the distinguished
symbol null, a location, or an object C(�), that denotes an instance of class C, in which
field fi has value �i.

In the following, we use over-bar to represent a finite ordered sequence, for instance,
f represents f1 f2 . . . fn. The term αα denotes the extension of the sequence α with a
single element α, and α α′ denotes sequence concatenation, S.OPt denotes the exten-
sion of schedule S with operation OPt. Given schedules S and S′, we write S � S′ if
S is a subsequence of S′.

Program evaluation and schedule construction is specified by a reduction relation,
P, Δ, Γ, S =⇒ P ′, Δ′, Γ ′, S′ that maps program states to new program states. A state
consists of a collection of evaluating processes (P), a thread store (Δ) that maps threads
to a local cache, a global store (Γ) that maps locations to values, and a schedule (S) that
defines a collection of interleaved actions. This relation is defined up to congruence of
processes (P |P ′ = P ′|P , etc.). An auxiliary relation �t is used to describe reduction
steps performed by a specific thread t. Actions that are recorded by a schedule are
those that read and write locations, and those that acquire and release locks, the latter
generated as part of guard evaluation. Informally, threads evaluate expressions using
their local cache, loading and flushing their cache at synchronization points defined
by guard expressions. These semantics roughly correspond to a release consistency
memory model similar to the Java memory model [22].

The term t[E [e]] evaluated in a reduction rule is identified by the thread t in which
it occurs; thus Et

P [e] denotes a collection of processes containing a process with thread

Transparently Reconciling Transactions with Locking 153

PROGRAM STATES

t ∈ Tid
P ∈ Process
x ∈ Var
� ∈ Loc
v ∈ Val = null | C(�) | �
σ ∈ Store = Loc → Val
Γ ∈ SMap = Loc → Store
Δ ∈ TStore = Tid → Store

OPΓ
t �, OPt � ∈ Ops = {rd,wr} × Tid × Loc+

{acq, rel} × Tid × Loc × SMap
S ∈ Schedule= Ops∗

Λ ∈ State = Process × Store × Schedule

EVALUATION CONTEXTS

E ::= • | E .f := e | �.f :=E
| E .m(e) | �.m(� E e)

| let x = E in e end

| guard {E} e

Et
P [e] ::= P | t[E [e]]

SEQUENTIAL EVALUATION RULES

let x = v in e end, σ, S �t e[v/x], σ, S

mbody(m, C) = (x, e) σ(�) = C(�)
�.m(v), σ, S �t [v/x, �/this]e, σ, S

field(C) = f σ(�) = C(�) S′ = S . rdt �

�.fi , σ, S �t �i , σ, S′

σ(�) = C(�′′) σ(�′) = v
σ′ = σ[�′′

i �→ v]
S′ = S . rdt �′ .wrt �′′

i

�.fi := �′, σ, S �t �′, σ′, S′

�′, � fresh
σ′ = σ[�′ �→ C(�), � �→ null]

S′ = S . wrt �1 wrt �n .wrt �′

�1, . . . , �n ∈ �

new C(), σ, S �t �′, σ′, S′

GLOBAL EVALUATION RULES

Δ(t) = σ
e, σ, S �t,Γ e′, σ′, S′

Et
P [e], Δ, Γ, S =⇒ Et

P [e′], Δ[t �→ σ′], Γ, S′

σ = Δ(t) σ′ = σ ◦ Γ (�)
Δ′ = Δ[t �→ σ′]
� �∈ lockset(S, t)

Et
P [e], Δ′, Γ, φ =⇒∗ P ′ | t[v], Δ′′, Γ ′, S′

Γ ′′ = Γ ′[� �→ Γ ′(�) ◦ Δ′′(t)]
Et

P [guard {�} e], Δ, Γ, S

=⇒ Et
P ′ [v], Δ′′, Γ ′′, S.acqΓ

t �.S′.relΓ
′

t �

t′ fresh Δ′ = Δ[t′ �→ Δ(t)]
P ′ = P | t′[e]

Et
P [spawn (e)], Δ, Γ, S =⇒ Et

P ′ [null], Δ′, Γ, S

Fig. 2. Semantics

identifier t executing expression e with context E . The expression “picked” for evalua-
tion is determined by the structure of evaluation contexts.

Most of the rules are standard: holes in contexts can be replaced by the value of the
expression substituted for the hole, let expressions substitute the value of the bound
variable in their body. Method invocation binds the variable this to the current re-
ceiver object, in addition to binding actuals to parameters, and evaluates the method
body in this augmented environment. Read and write operations augment the schedule

154 A. Welc, A.L. Hosking, and S. Jagannathan

in the obvious way. Constructor application returns a reference to a new object whose
fields are initialized to null.

To evaluate expression e within a separate thread, we first associate the new thread
with a fresh thread identifier, set the thread’s local store to be the current local store of
its parent, and begin evaluation of e using an empty context.

Let � be the monitor for a guard expression. Before evaluating the body, the local
store for the thread evaluating the guard is updated to load the current contents of the
global store at location �. In other words, global memory is indexed by the set of lo-
cations that act as monitors: whenever a thread attempts to synchronize against one of
these monitors (say, �), the thread augments its local cache with the store associated
with � in the global store. The body of the guard expression is then evaluated with re-
spect to this updated cache. When the expression completes, the converse operation is
performed: the contents of the local cache are flushed to the global store indexed by �.
Thus, threads that synchronize on different references will not have their updates made
visible to one another. Observe that the semantics do not support a single global store; to
propagate effects performed in one thread to all other threads would require encoding
a protocol that uses a global monitor for synchronization. To simplify the presenta-
tion, we prohibit nested guard expressions from synchronizing on the same reference
(� �∈ lockset(S, t)).

3.1 Schedules

When the body of the guard is entered, the schedule is augmented to record the fact that
there was monitored access to e via monitor � by thread t (acqΓ

t �). When evaluation of
the guard completes, the schedule is updated to reflect that reference � is no longer used
as a monitor by t (relΓ

′

t �). The global store recorded in the schedule at synchronization
acquire and release points will be used to define safety conditions for mutual-exclusion
and transactional execution as we describe below.

These semantics make no attempt to enforce a particular concurrency model on
thread execution. Instead, we specify safety properties that dictate the legality of an
interleaving by defining predicates on schedules. To do so, it is convenient to reason in
terms of regions, subschedules produced as a result of guard evaluation:

region(S) = {Si � S|Si = acqΓ
t �.S′

i.rel
Γ ′

t �}

For any region R = acqΓ
t �.S′

i.rel
Γ ′

t �, T (R) = t, and L(R) = �.
The predicate msafe(S) defines the structure of schedules that correspond to an

interpretation of guards in terms of mutual exclusion:

Definition 1. Msafe

∀R ∈ region(S) T (R) = t, L(R) = �

t �= t′ → acqΓ ′

t′ � �∈ R

msafe(S)

For a schedule to be safe with respect to concurrency control based on mutual exclu-
sion, multiple threads cannot concurrently execute within the body of a guarded region

Transparently Reconciling Transactions with Locking 155

protected by the same monitor. Thus if thread t is executing within a guard protecting
expression e using monitor �, no other thread can attempt to acquire � until t relin-
quishes it.

We can also interpret thread execution within guarded expressions in terms of trans-
actions. Under this interpretation, multiple threads can execute transactionally within
the same guarded expression concurrently. To ensure the legality of such concurrent
executions, we impose constraints that capture notions of transactional isolation and
atomicity on schedules:

Definition 2. Isolated

∀R ∈ region(S) = acqΓ
t �.S′.relΓ

′

t �
∀rdt �′ ∈ S′

Γ (�) = σ ∧ Γ ′(�) = σ′ → σ(�′) = σ′(�′)
isolated(S)

Isolation ensures that locations read by a guarded region are not changed during the re-
gion’s evaluation. The property is enforced by requiring that the global store associated
with a region’s monitors is not modified during the execution of the region. Note that
the global store Γ ′ at the point control exits a guarded expression does reflect global
updates performed by other threads, but does not reflect local updates performed by
the current thread that have yet to be propagated. Thus, the isolation rule captures vis-
ibility constraints on schedules corresponding to execution within a guard expression;
namely, any location read within the schedule cannot be modified by other concurrently
executing threads.

Definition 3. Atomic

∀N, R ∈ region(S), � = L(N) R = Sb.N.Sa

T (N) = T (R) = t ∧ t �= t′ → acqΓ
t′ � �∈ Sa

atomic(S)

Atomicity ensures that the effects of a guarded region are not propagated to other
threads until the region completes. Observe that our semantics propagate updates to the
global store when a guarded region exits; these updates become visible to any thread
that subsequently executes a guard expression using the same monitor. Thus, a nested
region may have its effects made visible to any thread whose execution is mediated by
the same monitor. This would violate our intuitive notion of atomicity for the enclosing
guarded region since its partial effects (i.e., the effects performed by the inner region)
would be visible before it completes. Our atomicity rule thus captures the essence of
a closed nested transaction model: the effects of a nested transaction are visible to the
parent, via the local store, but are propagated to other threads only when the outermost
transaction completes.

Our safety rules are distinguished from other attempts at defining atomicity prop-
erties [14, 15] for concurrent programs because they do not rely on mutual-exclusion
semantics for lock acquisition and release. For example, consider a schedule in which
two threads interleave execution of two guarded regions protected by the same monitor.
Such an execution is meaningless for semantics in which synchronization is defined

156 A. Welc, A.L. Hosking, and S. Jagannathan

in terms of mutual-exclusion, but quite sensible if guarded regions are executed trans-
actionally. Isolation is satisfied if the actions performed by the two threads are non-
overlapping. Atomicity is satisfied even if these guarded regions execute in a nested
context because the actions performed within a region by one thread are not witnessed
by the other due to the language’s release consistency memory model.

Definition 4. Tsafe. We also define tsafe(S) (read “transaction-safe”) to hold if both
atomic(S) and isolated(S) hold.

3.2 Safety

In order to allow implementations to choose adaptively either a transactional or mutual-
exclusion based protocol for guarded regions, dictated by performance considerations, it
must be the case that there is no observable difference in the structure of the global store
as a consequence of the decisions taken. We show that programs that satisfy atomicity
and isolation exhibit this property.

Suppose program P induces schedule SP and tsafe(SP) holds. Now, if msafe(SP)
also holds, then any region in SP can be implemented either transactionally or using
mutual-exclusion. Suppose, however, that msafe(SP) does not hold. This is clearly
possible: consider an interleaving in which distinct threads concurrently evaluate guard
expressions protected by the same monitor, but whose bodies access disjoint locations.

Our soundness theorem shows that every such schedule can be permuted to one that
satisfies both msafe and tsafe . In other words, for every transaction-safe schedule, there
is an equivalent schedule that also satisfies constraints defining mutual-exclusion. Thus,
as long as regions in a program obey atomicity and isolation, they can be implemented
by either one of the mutual-exclusion or closed nested transaction mechanisms without
violating program semantics.

Theorem 1. Soundness. Let

t[e], Δ0, Γ0, φ =⇒∗ t[v], Δ, Γ, S

and suppose tsafe(S) holds but msafe(S) does not. Then, there exists a schedule Sf

such that
t[e], Δ0, Γ0, φ =⇒∗ t[v], Δ′, Γ ′, Sf

where tsafe(Sf) and msafe(Sf) hold, and in which Γ = Γ ′.

Proof Sketch. Let S be tsafe , R � S, and suppose msafe(R) does not hold, and
thus msafe(S) does not hold. Suppose R = acqΓ

t �.S′.relΓ
′

t �. Since msafe(R) does
not hold, there must be some R′ � S such that R′ = acqΓ ′′

t′ �.S′′.relΓ
′′′

t′ � where
acqΓ ′′

t′ � ∈ S′. Since isolated(S) holds, isolated(R) must also hold, and thus none of
the actions performed by t′ within S′ are visible to actions performed by t in S′. Sim-
ilarly, since atomicity holds, actions performed by t in S′ are not visible to operations
executed by t′ in S′. Suppose that relΓ

′′′

t′ � follows R in S. Then, effects of S′ may
become visible to operations in S′′ (e.g., through nested synchronization actions). But,
then isolated(R′) would not hold. However, because tsafe(S) holds, we can construct a

Transparently Reconciling Transactions with Locking 157

permuted schedule SP of S′ in which actions performed by R′ are not interleaved with
actions performed by R, thus ensuring that msafe(SP), isolated(SP), and atomic(SP)
all hold.

4 Design Overview

Our design is motived by three overarching goals:

1. The specific protocol used to implement guarded regions must be completely trans-
parent to the application. Thus, Java synchronized blocks and methods serve
as guarded regions, and may be executed either transactionally or exclusively de-
pending upon heuristics applied at run-time.

2. The modifications necessary to support such transparency should not lead to perfor-
mance degradation in the common case – single-threaded uncontended execution
within a guarded region – and should lead to notable performance gain in the case
when there is contention for entry to the region.

3. Transparency should not come at the expense of correctness. Thus, transactional
execution should not lead to behavior inconsistent with Java concurrency seman-
tics.

Issue 3 is satisfied for any Java program that is transaction-safe as defined in the previ-
ous section. Fortunately, recent studies have shown that the overwhelming majority of
concurrent Java programs exhibit monitor usage that satisfy the correctness goal by us-
ing monitors solely as a mechanism to enforce atomicity and isolation for sequences of
operations manipulating shared data [14]. We thus focus our attention in the remainder
of this section on the first two goals.

Note that lock-based synchronization techniques for languages such as Java are al-
ready heavily optimized for the case where monitors are uncontended [2, 5]. Indeed,
the Jikes RVM platform that serves in our experiments already supports very efficient
lock acquisition and release in this common case: atomically (using “test-and-set” or
equivalent instructions) set a bit in the header of the monitor object on entry and clear
it on exit. Only if another thread tries to acquire the monitor does lock inflation occur to
obtain a “fat” lock and initiate full-blown synchronization with wait queues, etc. Thus,
the second of our goals has already been met by the current-state-of-the-art.

Supporting transactional execution of guarded regions in place of such highly-
optimized locking techniques is thus a significant engineering challenge, if they are to
have any advantage at all. As discussed below, our implementation uses optimistic con-
currency control techniques to minimize the overhead of accesses to shared data [21].

We also make the obvious but important assumption that a guarded region cannot
be executed concurrently by different threads using different protocols (i.e., locking or
transactional). Any thread wishing to use a different protocol (e.g., locking) than the
one currently installed (e.g., transactional) for a given monitor must wait until all other
threads have exited the monitor.

4.1 Nesting and Delegation

Since Java monitors support nesting, our transparency requirement means that transac-
tional monitors must also support nesting. There is no conceptual difficulty in dealing

158 A. Welc, A.L. Hosking, and S. Jagannathan

with nesting; recall that the definition of atomicity and isolation captures the essence of
the closed nested transaction model [24], and that the prevalent usage of monitors is to
enforce atomicity and isolation [14].

Unfortunately, nesting poses a performance challenge since each monitor defines a
locus of contention, for which we must maintain enough information to validate the se-
rializability invariants that guarantee atomicity and isolation. Nesting exacerbates this
overhead since nested monitors must record separate access sets used to validate serial-
izability.

However, there is no a priori reason why accesses must be mediated by the imme-
diately enclosing monitor that guards them. For example, a single global monitor could
conceivably be used to mediate all accesses within all monitors. Under transactional ex-
ecution, a single global monitor effectively serves to implement the atomic construct
of Harris and Fraser [17]. Under lock-based execution, a single global monitor defines
a global exclusive lock. The primary reason why applications choose not to mediate
access to shared regions using a single monitor is because of increased contention and
corresponding reduced concurrency. In the case of mutual exclusion, a global lock re-
duces opportunities for concurrent execution; in the case of transactional execution, a
global monitor would have to mediate accesses from logically disjoint transactions, and
is likely to be inefficient and non-scalable.

Nonetheless, we can leverage this observation to optimize an important specific case
for transactional execution of monitors. Consider a thread T acquiring monitor outer,
and prior to releasing outer, also acquiring monitor inner. If no other thread at-
tempts concurrent acquisition of inner (i.e., the monitor is uncontended) then the ac-
quisition of inner can be delegated to outer. In other words, instead of synchroniz-
ing on monitor inner we can establish outer as inner’s delegate and synchronize
on outer instead. Since monitor inner is uncontended, there is nothing for inner
to mediate, and no loss of efficiency accrues because of nesting (provided that the act
of setting a delegate is inexpensive). Of course, when monitor inner is contended,
we must ensure that atomicity and isolation are appropriately enforced. Note that if
inner was an exclusive monitor, there would be no benefit in using delegation since
acquisition of an uncontended mutual-exclusion monitor is already expected to have
low overhead.

Protocol Description. Figure 3 illustrates how the delegation protocol works for a
specific schedule; for simplicity, we show only Java-level monitor acquire/release oper-
ations. The schedule consists of steps 1 through 6 enumerated in the first column of the
schedule table. The right-hand side of Figure 3 describes the state of the transactional
monitors, used throughout the schedule, with respect to delegation. A monitor whose
delegate has been set is shaded grey; an arrow represents the reference to its delegate. To
begin, we assume that the delegates of both monitor outer and monitor inner have
not been set. Thread T starts by (transactionally) “acquiring” monitor outer, creating
a new transaction whose accesses are mediated by outer and setting outer’s del-
egate to itself (step 1 in Figure 3(a)). Then T proceeds to (transactionally) “acquire”
monitor inner. Because there is no delegate for inner, and T is already executing
within a transaction mediated by outer, T sets inner’s delegate to refer to outer
(step 2 in Figure 3(b)).

Transparently Reconciling Transactions with Locking 159

T T ′

1 acq(outer)
2 acq(inner)
3 acq(inner)
4 rel(inner)
5 rel(outer)
6 rel(inner)

outer inner

(a) step 1: T sets outer’s
delegate to outer

outer inner

(b) step 2: T sets inner’s
delegate to outer

outer inner

(c) steps 3-5: delegates re-
main set despite releases by
T

outer inner

(d) step 6: all delegates are
cleared

Fig. 3. Delegation example

This protocol implements a closed nested transaction model: the effects of T ’s execu-
tion within monitor inner are not made globally visible until the outer transaction
commits, since only outer is responsible for mediating T ’s accesses and validating
serializability.

The delegates stay set throughout steps 3, 4 and 5 (Figure 3(b)), even after thread T ,
the setter of both delegates, commits its top-level transaction and “releases” outer. In
the meantime, thread T ′ attempts to “acquire” inner. The delegate of inner is at this
point already set to outer so thread T ′ starts its own transaction whose accesses are
mediated by outer. The delegates are cleared only after T ′’s transaction, mediated by
outer, commits or aborts. At this point there is no further use for the delegates.

Note that some precision is lost in this example: the transactional meta-data main-
tained by outer is presumably greater than what would be necessary to simply im-
plement consistency checks for actions guarded by inner. However, despite nesting,
only one monitor (outer) has been used to mediate concurrent data accesses and only
one set of transactional meta-data was created for outer. However, observe that if the
actions of steps 2 and 3 are reversed so that T ′ acquires inner before T then inner’s
delegate would not be set, and T ′ would begin its new transaction mediated in this case
by inner, so transactional meta-data for both outer and inner would be needed.

4.2 Reverting to Mutual Exclusion

Optimistic concurrency control assumes the existence of a revocation mechanism so
that the effects of a transaction can be reversed on abort. In real world Java applications
some operations (e.g., I/O) are irrevocable, so their effects cannot be reversed. To handle
such situations, we force any thread executing transactionally guarded by some monitor,
but which attempts an irrevocable operation, to revert immediately to mutual exclusion.
To support this, each thread executing transactionally must record the monitors it has
“acquired” in order of acquisition. Our implementation reverts to mutual exclusion calls
to native methods, and at explicit thread synchronization using wait/notify. At the
point where such operations arise, we attempt acquisition of all the monitors that the

160 A. Welc, A.L. Hosking, and S. Jagannathan

thread acquired transactionally, in order of acquisition. Successful acquisition of all the
monitors implies that all other threads executing transactions against those monitors
have completed, exited the monitors, and cleared their respective delegates. From that
point on the locking thread can proceed in mutual-exclusion mode, releasing the locks
as it exits the monitor scopes. If the transition is unsuccessful (because some other
thread acquired the monitors in lock-mode) then the thread executing the irrevocable
operation is revoked (i.e., its innermost transaction is aborted) and re-executed from its
transaction starting point.

5 Implementation

Our transactional delegation protocol reduces overheads for uncontended nested mon-
itors executed transactionally by deploying nested transaction support only when ab-
solutely necessary. Thus, transactions are employed only for top-level monitors or for
contended nested monitors, as described earlier.

Transactions are implemented using an optimistic protocol [21], divided into three
phases: read, validate and write-back. Each transaction updates private copies of the
objects it manipulates: a copy is created when the transaction (thread) first writes to
an object. The validation phase verifies transaction-safety, aborting the transaction and
discarding the copies if safety is violated. Otherwise, the write-back phase lazily prop-
agates updated copies to the shared heap, installing each of them atomically.

In the remainder of this section we discuss our strategy for detecting violation of
serializability via dependency tracking, our solutions for revocation and re-execution
on abort, and details of the implementation platform.

5.1 Platform

Our prototype implementation is based on the Jikes Research Virtual Machine (RVM)
[4]. The Jikes RVM is a reserch Java virtual machine with performance comparable
to many production virtual machines. Jikes RVM itself is written almost entirely in
Java and is self-hosted (i.e., it does not require another virtual machine to run). Java
bytecodes in the Jikes RVM are compiled directly to machine code. The Jikes RVM’s
distribution includes both a baseline and an optimizing compiler. The baseline compiler
performs a straightforward expansion of each bytecode instruction into its correspond-
ing sequence of assembly instructions. Our prototype targets the Intel x86 architecture.

5.2 Read and Write Barriers

Our technique to control and modify accesses to shared data uses compiler-inserted
read and write barriers. These barriers are code snippets emitted by the compiler to
augment each heap read and write operation. They trigger creation of versions (copy-
on-write) and redirection of reads to the appropriate version, as well as tracking data
dependencies.

5.3 Detecting Validity

Threads executing concurrently in the scope of a given monitor will run as separate
transactions. Each transaction hashes its shared data accesses into two private hash

Transparently Reconciling Transactions with Locking 161

maps: a read-map and a write-map, mapping each shared object to a single bit. Once a
transaction commits and propagates its updates into the shared heap it also propagates
information about its own updates to a global write-map associated with the monitor
mediating the transaction. Other transactions whose operations are mediated by the
same monitor will then, during their validation phase, intersect their local read-maps
with the global write-map to determine if the shared data accesses caused a violation
of serializability. When nesting results in an inner monitor running a distinct nested
transaction (as opposed to piggy-backing on its delegate-parent) there will be a sep-
arate global write-map for each transaction level, so validation must check all global
write-maps at all nesting levels. The remaining details of our implementation are the
same as in our earlier work [36].

Since for most Java programs reads significantly outnumber writes, reducing the
number of read barriers is critical to achieving reasonable performance. Our imple-
mentation therefore trades-off accuracy for run-time efficiency in detecting violation of
transaction safety. Instead of placing barriers on all reads to shared heap variables (e.g.,
reading an integer from an object), we assume that the first time a reference is loaded
from the heap, it will eventually be used to read from its target object. Thus, read barri-
ers are placed only on loads of references from the heap. In other words, we “pre-read”
(tagging the local-read map appropriately) all objects whose references are loaded to
the stack of a transactional thread. As a result, even objects that are never read, but
only written, are conservatively pre-read. This greatly simplifies version management
and enables early detection of serializability violations, as described below. This read
barrier optimization is applied only for objects and arrays. All other accesses, including
all reads from static variables and all writes to shared items incur an appropriate barrier.

5.4 Revocation

Our revocation procedure is identical to our prior work [36], allowing for transac-
tion abort at arbitrary points during its execution. The abort is signaled by throwing a
Revoke exception. Undo and re-execution procedures are implemented using a com-
bination of bytecode re-writing and virtual machine modifications. Even though Java
monitors are lexically scoped, it is necessary to support transaction aborts at arbitrary
points to correctly handle native method calls as well as wait and notify operations,
as described in Section 4.2.

In the case of optimistic protocols, the decision about whether a transaction should
be committed or aborted is made during the validation phase. Since transactions are
lexically scoped, it is relatively easy to encapsulate the computation state at the begin-
ning of the transaction so that it can be reinstated if the transaction aborts, by copying
the closure of thread-local state at that point. We use bytecode rewriting in conjunction
with a modified exception handling mechanism to restore this saved state on abort.

5.5 Versioning

We use shared data versioning to prevent the effects of incomplete transactions from
being made visible to other threads until they commit. We maintain versions of both
objects and arrays, as well as static (global) variables. Object and array versioning are

162 A. Welc, A.L. Hosking, and S. Jagannathan

handled exactly the same. Statics use a slightly modified approach, requiring boxing
and unboxing of the static values.

Because our array versioning procedure is identical to that used for versioning ob-
jects, we refer only to objects in the following description. Versions are accessible
through a forwarding pointer from the original object. We use a “copy-on-write” strat-
egy for creating new versions. A transaction creates a new (uncommitted) copy right
before performing first update to an object, and redirects all subsequent read and write
operations to access that version. It is important to note that for transaction safety all
programs executed in our system must be race-free (a prerequisite for atomicity): all
accesses by all threads to a given shared data item must be guarded by the same moni-
tor [14]. As a result, writes to the same location performed by different threads will be
detected as unsafe by our validity check described above. This also means that only the
first transaction writing to a given object need create a version for it. Other transactions
accessing that object are aborted when the writing transaction commits and discovers
the overlap.

Upon successful commit of a transaction, the current version becomes the committed
version and remains accessible via a forwarding pointer installed in the original object.
Subsequent accesses are re-directed (in the read and write barriers) via the forwarding
pointer to the committed version. When a transaction aborts all its versions are dis-
carded. Note that at most two versions of an object exist at any given time: a committed
version and an uncommitted version.

As noted above, the read barriers are only executed on reference loads. In general,
multiple on-stack references may end up pointing to different versions of the same ob-
ject. This is possible, even though read barriers are responsible for retrieving the most
up-to-date version of the object, writes may occur after the reference has been loaded to
multiple locations on the stack. The run-time system must thus ensure that the version
of an object accessible through an on-stack reference is the “correct” one. The visibility
rules for the Java Memory Model [22] mean that at certain synchronization points (e.g.,
monitor entry, access to volatile variables, etc.) threads are obliged to have the same
view of the shared heap. As a result, it is legal to defer fixing on-stack references until
specific synchronization points (e.g., monitor enter/exit, wait/notify). At these points all
on-stack references must be forwarded to the most up-to-date version. Reference for-
warding is implemented using a modified version of thread stack inspection as used by
the garbage collector.

In addition to performing reference forwarding at synchronization points, when a
version is first created by a transaction, the thread creating the version must forward
all references on its stack to point to the new version. This ensures that all subsequent
accesses (by the same thread) observe the results of the update.

5.6 Example

We now present an example of how these different implementation features interact.
Figure 4 describes actions concerning shared data versioning and serializability viola-
tion detection, performed by threads T , T ′ and T ′′ executing the schedule shown in
Table 1. Figure 4(a) represents the initial state, before any threads have started execut-
ing. Wavy lines represent threads, and circles represent objects o1 and o2. The objects

Transparently Reconciling Transactions with Locking 163

Table 1. A non-serializable schedule

Step T T ′ T ′′

1 acq(outer)
2 wt(o2)
3 acq(inner)
4 wt(o1)
5 acq(outer)
6 acq(inner)
7 rd(o1)
8 rel(inner)
9 rel(outer)
10 rd(o1)
11 rel(inner)
12 rel(outer)

T’
LW LR

LRLW

T

T’’
GW

o2

o1

LW LR

GW

(a)

LR

T’
LR

LR

T

T’’

o2v

o2

o1v
o1

LW

LW

LW

GW

GW

(b)

LR

T’
LR

LR

T

T’’

o2v

o2

o1v
o1

LW

LW

LW

GW

GW

(c)

LR

T’
LR

LR

T

T’’

o2v

o2

o1v

LW

LW

LW

GW

GW

o1

(d)

LR

T’
LR

LR

T

T’’

o2v

o2

o1v

LW

LW

LW

GW

GW

o1

(e)

LR

T’
LR

LR

T

T’’

o2v

o2

o1v

LW

LW

LW

GW

GW

o1

(f)

Fig. 4. A non-serializable execution

have not yet been versioned – they are shaded grey because at the moment they contain
the most up-to-date values. The larger box (open at the bottom) represents the scope
of transactional monitor outer, the smaller box (open at the top) represents the scope
of transactional monitor inner. Both the global write map (GW) associated with the
monitor and the local maps (write map LW and read map LR) associated with each
thread have three slots. Maps that belong to a given thread are located above the wavy

164 A. Welc, A.L. Hosking, and S. Jagannathan

line representing this thread. We assume that accesses to object o1 hash to the first slot
of every map and accesses to object o2 hash to the second slot of every map

Execution begins with threads T and T ′′ starting to run transactions whose opera-
tions are mediated by monitors outer and inner (respectively) and performing up-
dates to objects o2 and o1 (respectively), as presented in Figure 4(b). The updates
trigger creation of copies o2v and o1v for objects o2 and o1, respectively, and tag-
ging of the local write maps. Thread T tags the second slot of its local write map since
it modifies object o2, whereas thread T ′′ tags the first slot of its local write map since
it modifies object o1. In Figure 4(c) thread T ′ starts executing, running the outermost
transaction mediated by monitor outer and its inner transaction mediated by monitor
inner, and then reads object o1, which tags the local read map. In Figure 4(d) T ′′

attempts to commit its transaction. Since no writes by other transactions mediated by
monitor inner have been performed, the commit is successful: o1v becomes the com-
mitted version, the contents of T ′′’s local write map are transferred to inner’s global
write map and the local write map is cleared. Similarly, in Figure 4(e), T ’s transaction
commits successfully: o2v becomes the committed version and the local write map is
cleared after its contents has been transfered to the global write map associated with
monitor outer. In Figure 4(f) thread T ′ proceeds to again read object o1 and then
to commit its transactions (both inner and outer). However, because a new committed
version of object o1 has been created, o1v is read by T ′ instead of the original object.
When attempting to commit both its inner and outer transactions, thread T ′ must inter-
sect its local read map with the global maps associated with both monitor outer and
monitor inner. The first intersection is empty (no writes performed in the scope of
monitor outer could compromise reads performed by T ′), the second however is not
– both transactions executed by T ′ must be aborted and re-executed.

5.7 Header Compression

For performance we need efficient access to several items of meta-data associated with
each object (e.g., versions and their identities, delegates, identity hash-codes, access
maps, etc.). At the same time, we must keep overheads to a minimum when transactions
are not used. The simplest solution is to extend object headers to associate the necessary
meta-data. Our transactional meta-data requires up to four 32-bit words. Unfortunately,
Jikes RVM does not easily support variable header sizes and extending the header of
each object by four words has serious overheads of space and performance, even in the
case of non-transactional execution. On the other hand keeping meta-data “on the side”
(e.g., in a hash table), also results in a significant performance hit.

We therefore implement a compromise. The header of every object is extended by a
single descriptor word that is lazily populated when meta-data needs to be associated
with the object. If an object is never accessed in a transactional context, its descriptor
word remains empty. Because writes are much less common than reads, we treat the
information needed for reads as the common case. The first transactional read will place
the object’s identity hash-code in the descriptor (we generate hash codes independently
of native Jikes RVM object hashcodes to ensure good data distribution in the access
maps). If additional meta-data needs to be associated with the object (e.g., a new version
on write) then the descriptor word is overwritten with a reference to a new descriptor

Transparently Reconciling Transactions with Locking 165

object containing all the necessary meta-data (including the hash-code originally stored
in the descriptor word). We discriminate these two cases using the low-order bit of the
descriptor word.

5.8 Code Duplication

Transactional support (e.g., read and write barriers) is required only when a thread de-
cides to execute a given monitor transactionally. However, it is difficult to determine if
a particular method is going to be used only in a non-transactional context. To avoid un-
necessary overheads during non-transactional execution, we use bytecode rewriting to
duplicate the code of all (user-level) methods actually being executed by the program.
Every method can then be compiled in two versions: one that embeds transactional sup-
port (transactional methods) and one that does not (non-transactional methods). This
allows the run-time system to dynamically build a call chain consisting entirely of non-
transactional methods for non-transactional execution. Unfortunately, because of our
choice to access most up-to-date versions of objects through forwarding pointers, we
cannot fully eliminate read barriers even in non-transactional methods. We can however
eliminate all write barriers and make the non-transactional read barriers very fast in the
common case – they must simply differentiate objects that have never been accessed
transactionally from those that have. In addition to the usual reference load, such barri-
ers consist only of a null check, one condition, and one load. These instructions verify
that the descriptor word is empty, indicating that the object has never been accessed
transactionally, so no alternate version has ever been created.

5.9 Triggering Transactional Execution

Our implementation must be able to determine whether to execute a given monitor
transactionally or exclusively. We use a very light-weight heuristic to detect monitor
contention and trigger transactional execution only for contended monitors . The first
thread to enter a monitor always executes the monitor exclusively. It is only after a thin
mutual-exclusion lock is “inflated” by being turned into a fat lock (on contended acqui-
sition of the lock) that the monitor in question is asserted to be contended. All threads
queued waiting for the monitor will then execute transactionally once the currently ex-
ecuting (locking) thread exits the monitor. We recognize that there are more advanced
and potentially more conservative heuristics that a production system may wish to use.
For example, programmer annotations could be provided to mark the concurrency con-
trol mechanism that is to be used for different monitors. Adaptive solutions based on
dynamic profiling or solutions utilizing off-line profiles may also provide more refined
information on when it is best to execute monitors transactionally.

6 Experiments

The performance evaluation of our prototype implementation is divided into two parts.
We use a number of single-threaded benchmarks (from the SPECjvm98 [31] and Java
Grande [30] suites) to measure the overheads of supporting hybrid-mode execution
(e.g., compiler-inserted barriers, code-duplication, object layout modifications, etc.)

166 A. Welc, A.L. Hosking, and S. Jagannathan

when monitors are uncontended. We also use an extended version of the OO7 object
database benchmark [10], to expose the range of performance when executing under dif-
ferent levels of monitor contention. We measure the behavior when all monitors are ex-
ecuted transactionally and when using the hybrid scheme that executes monitors trans-
actionally only when sufficient monitor contention is detected. Our measurements were
taken on an eight-way 700MHz Intel Pentium III symmetric multi-processor (SMP)
with 2GB of RAM running Linux kernel version 2.4.20-31.9smp (RedHat 9.0). Our im-
plementation uses version 2.3.4+CVS (with 2005/12/08 15:01:10 UTC timestamp) of
Jikes RVM for all the configurations used to take the measurements (mutual-exclusion-
only, transactions-only and hybrid). We ran each benchmark configuration in its own
invocation of the virtual machine, repeating the benchmark six times in each invoca-
tion, and discarding the results of the first iteration, in which the benchmark classes are
loaded and compiled, to eliminate the overheads of compilation.

6.1 Uncontended Execution

A summary of our performance evaluation results when monitors are uncontended is
presented in Figure 5. Our current prototype implementation is restricted to running
bytecodes compiled with debugging information for local variables; this information is
needed by the bytecode rewriter for generating code to store and restore local state in
case of abort. Therefore, we can only obtain results for those SPECjvm98 benchmarks
for which source code is available.

In Figure 5(a) we report total summary overheads for a configuration that supports
hybrid-mode execution. The overheads are reported as a percentage with respect to a
“clean” build of the “vanilla” unmodified Jikes RVM. The average overhead is on the
order of 7%, with a large portion of the performance degradation attributed to execution
of the compiler-inserted barriers, as described below. Figure 5(b) reveals how different
mechanisms for transactional execution affect performance in the uncontended case.
The bottom of every bar represents the effect of extending the header of every object
by one word (as needed to support transaction-related meta-data). The middle of every
bar represents the cost of all other system modifications, excluding compiler-inserted

compress db

raytra
ce

crypt fft heap
lufact

series sor
sparse

-20

-10

0

10

20

30

40

50

O
ve

rh
ea

d
(%

)

(a) total overhead

compress db

raytra
ce

crypt fft heap
lufact

series sor
sparse

-20

-10

0

10

20

30

40

50

O
ve

rh
ea

d
(%

)

ext header
other
barrier

(b) component overheads

Fig. 5. Uncontended execution

Transparently Reconciling Transactions with Locking 167

barriers.1 The top bar captures overhead from execution of the barriers themselves
(mostly read barriers but also barriers on static variable accesses).

Observe that changing the object layout can by itself have a significant impact on
performance. In most cases, the version of the system with larger object headers indeed
induces overheads over the clean build of Jikes RVM, but in some situations (e.g., FFT
or Series), its performance actually improves over the clean build by a significant
amount; variations in cache footprint is the most likely cause. The performance impact
of the compiler-inserted barriers is also clearly noticeable, especially in the case of
benchmarks from the SPECjvm98 suite. When discounting overheads related to the
execution of the barriers, the average overhead with respect to the clean build of Jikes
RVM drops to a little over 1% on average. This result is consistent with that reported by
Blackburn and Hosking [7] for garbage collection read barriers that can incur overheads
up to 20%. It would be beneficial for our system to use a garbage collector that might
help to amortize the cost of the read barrier. Fortunately, there exist modern garbage
collectors (e.g., [6]) that fulfill this requirement.

6.2 Contended Execution

The OO7 benchmark suite [10] provides a great deal of flexibility of benchmark pa-
rameters (e.g., database structure, fractions of reads/writes to shared/private data). The
multi-user OO7 benchmark [9] allows control over the degree of contention for access
to shared data. In choosing OO7 as a benchmark our goal was to accurately gauge
the various trade-offs inherent with our implementation over a wide range of different
workloads, rather than emulating specific workloads of potential applications. We be-
lieve the benchmark captures essential features of scalable concurrent programs that can
be used to quantify the impact of the design decisions underlying our implementation.

The OO7 benchmark operates on a synthetic design database, consisting of a set
of composite parts. Each composite part comprises a graph of atomic parts, and a
document object containing a small amount of text. Each atomic part has a set of
attributes (i.e., fields), and is connected via a bi-directional association to several other
atomic parts. The connections are implemented by interposing a separate connection
object between each pair of connected atomic parts. Composite parts are arranged in
an assembly hierarchy; each assembly is either made up of composite parts (a base as-
sembly) or other assemblies (a complex assembly). Each assembly hierarchy is called a
module, and has an associated manual object consisting of a large amount of text. Our
results are all obtained with an OO7 database configured as in Table 2.

Our implementation of OO7 conforms to the standard OO7 database specification.
Our traversals are a modified version of the multi-user OO7 traversals. A traversal
chooses a single path through the assembly hierarchy and at the composite part level
randomly chooses a fixed number of composite parts to visit (the number of compos-
ite parts to be visited during a single traversal is a configurable parameter). When the
traversal reaches the composite part, it has two choices:

1. Do a read-only depth-first traversal of the atomic part subgraph associated with that
composite part; or

1 The measurements were taken after artificially removing compiler-inserted barriers from the
“full” version of the system. Naturally our system cannot function without barriers.

168 A. Welc, A.L. Hosking, and S. Jagannathan

Table 2. Component organization of the OO7 benchmark

Component Number
Modules 1
Assembly levels 7
Subassemblies per complex assembly 3
Composite parts per assembly 3
Composite parts per module 500
Atomic parts per composite part 20
Connections per atomic part 3
Document size (bytes) 2000
Manual size (bytes) 100000

2. Do a read-write depth-first traversal of the associated atomic part subgraph, swap-
ping the x and y coordinates of each atomic part as it is visited.

Each traversal can be done beginning with either a private module or a shared mod-
ule. The parameter’s of the workload control the mix of these four basic operations:
read/write and private/shared. To foster some degree of interesting interleaving and
contention in the case of concurrent execution, our traversals also take a parameter
that allows extra overhead to be added to read operations to increase the time spent
performing traversals.

Our experiments here use traversals that always operate on the shared module, since
we are interested in the effects of contention on performance of our system. Our imple-
mentation of OO7 conforms to the standard OO7 database specification. Our traversals
differ from the original OO7 traversals in adding a parameter that controls entry to mon-
itors at varying levels of the database hierarchy. We run 64 threads on 8 physical CPUs.
Every thread performs 1000 traversals (enters 1000 monitors) and visits 4M atomic
parts during each iteration. When running the benchmarks we varied the following pa-
rameters:

– ratio of shared reads to shared writes: from 10% shared reads and 90% shared writes
(mostly read-only workload) to 90% shared reads and 10% shared writes (mostly
write-only workload).

– level of the assembly hierarchy at which monitors are entered: level one (module
level), level three (second layer of complex assemblies) and level six (fifth layer
of complex assemblies). Varying the level at which monitors are entered models
different granularities of user-level synchronization from coarse-grained through to
fine-grained and diversifies the degree of monitor contention.

Figure 6 plots execution times for the OO7 benchmark when all threads execute all
monitors transactionally (Figure 6(a)) and when threads execute in hybrid mode, where
the mode is chosen based on monitor contention (Figure 6(b)). The execution times are
normalized with respect to the performance of the “clean” build of Jikes RVM (90%
confidence intervals are also reported). Figure 7 plots the total number of aborts for
both transactions-only (Figure 7(a)) and hybrid (Figure 7(b)) executions. Different lines
on the graphs represent different levels of user-level synchronization granularity – one
being the most coarse-grained and six being the most fine-grained.

Transparently Reconciling Transactions with Locking 169

10 20 30 40 50 60 70 80 90
Percent of writes (100% - percent of reads)

0

0.5

1

1.5

2

E
la

ps
ed

 ti
m

e
(n

or
m

al
iz

ed
)

Level 1
Level 3
Level 6

(a) transactions-only

10 20 30 40 50 60 70 80 90
Percent of writes (100% - percent of reads)

0

0.5

1

1.5

2

E
la

ps
ed

 ti
m

e
(n

or
m

al
iz

ed
)

Level 1
Level 3
Level 6

(b) hybrid-mode

Fig. 6. Normalized execution times for the OO7 benchmark

When there is a suitable level of monitor contention, and when the number of writes
is moderate, transactional execution significantly outperforms mutual exclusion by up
to three times. The performance of the transactions-only scheme degrades as the num-
ber of writes increases (and so does the number of generated hash-codes) since the
number of bitmap collisions increases, leading to a large number of aborts even at low
contention (Figure 7(b)). Extending the size of the maps used to detect serializability
violations would certainly remedy the problem, at least in part. However, we cannot use
maps of an arbitrary size. This could unfavorably affect memory overheads (especially
compared to mutual-exclusion locks) but more importantly we have determined that the
time to process potentially multiple maps at the end of the outermost transaction must
be bounded. Otherwise, the time spent to process them becomes a source of significant
delay (currently each map contains over 16,000 slots). The increased number of aborts
certainly has a very significant impact on the difference in performance between the
transactions-only and hybrid schemes. The overheads of the transactions-only scheme
cannot however be attributed only to the increased abort rate – observe that the shape of

10 20 30 40 50 60 70 80 90
Percent of writes (100% - percent of reads)

100

1000

10000

100000

N
um

be
r

of
 a

bo
rt

s

Level 1
Level 3
Level 6

(a) transactions-only

10 20 30 40 50 60 70 80 90
Percent of writes (100% - percent of reads)

100

1000

10000

100000

N
um

be
r

of
 a

bo
rt

s

Level 1
Level 3
Level 6

(b) hybrid-mode

Fig. 7. Total number of aborts for the OO7 benchmark

170 A. Welc, A.L. Hosking, and S. Jagannathan

the graphs plotting execution times and aborts are different. During hybrid-mode exe-
cution, monitors are executed transactionally only when monitor contention is detected,
read and write operations executed within uncontended monitors incur little overhead,
and the revocations are very few. Thus, instead of performance degradation of over
70% in the transactions-only case when writes are dominant, our hybrid scheme incurs
overhead on the order of only 10%.

7 Related Work

The design and implementation of our system has been inspired by the optimistic con-
currency protocols first introduced in the 1980’s [21] to improve database performance.
Given a collection of transactions, the goal in an optimistic concurrency implementation
is to ensure that only a serializable schedule results [1, 19, 32]. Devising fast and efficient
techniques to confirm that a schedule is correct remains an important topic of study.

There have been several attempts to reduce overheads related to mutual-exclusion
locking in Java. Agesen et al. [2] and Bacon et al. [5] describe locking implementations
for Java that attempt to optimize lock acquisition overhead when there is no contention
on a shared object. Other recent efforts explore alternatives to lock-based concurrent
programming [17, 36, 20, 18]. In these systems, threads are allowed to execute within a
guarded region (e.g., protected by monitors) concurrently, but are monitored to ensure
that safety invariants (e.g., serializability) are not violated. If a violation of these invari-
ants by some thread is detected, the computation performed by this thread is revoked, any
updates performed so far discarded and the thread is re-executed. Our approach differs
from these in that it seamlessly integrates different techniques to manage concurrency
within the same system. When using our approach, the most appropriate scheme is dy-
namically chosen to handle concurrency control in different parts of the same application.

There is also a large body of work on removing synchronization primitives when it
can be shown that there is never contention for the region being guarded [3, 28, 33].
The results derived from these efforts would equally benefit applications running in the
system supporting hybrid-mode execution.

There has been much recent interest in devising techniques to detect data races in
concurrent programs. Some of these efforts [13, 8] present new type systems using, for
example, ownership types [12] to verify the absence of data races and deadlocks. Others
such as Eraser [29] employ dynamic techniques to check for races in programs [25, 23,
34]. There have also been attempts to leverage static analyses to reduce overheads and
increase precision of purely dynamic implementations [11, 35].

Recent work on deriving higher-level safety properties of concurrent programs [15,
14] subsumes data-race detection. It is based on the observation that race-free programs
may still exhibit undesirable behavior because they violate intuitive invariants such as
atomicity that are not easily expressed using low-level abstractions such as locks.

8 Conclusions

Existing approaches to providing concurrency abstractions for programming languages
offer disjoint solutions for mediating concurrent accesses to shared data throughout

Transparently Reconciling Transactions with Locking 171

the lifetime of the entire application. Typically these mechanisms are either based on
mutual exclusion or on some form of transactional support. Unfortunately, none of these
techniques is ideally suited for all possible workloads. Mutual exclusion performs best
when there is no contention on guarded region execution, while transactions have the
potential to extract additional concurrency when contention exists.

We have designed and implemented a system that seamlessly integrates mutual ex-
clusion and optimistic transactions to implement Java monitors. We formally argue cor-
rectness (with respect to language semantics) of such a system and provide a detailed
performance evaluation of our hybrid scheme for different workloads and varying lev-
els of contention. Our implementation and experiments demonstrate that the hybrid
approach has low overheads (on the order of 7%) in the uncontended (base) case and
that significant performance improvements (speedups up to 3×)can be expected from
running contended monitors transactionally.

Acknowledgements

We thank the anonymous referees for their suggestions and improvements to this paper.
This work is supported by the National Science Foundation under grants Nos. CCR-
0085792, CNS-0509377, CCF-0540866, and CNS-0551658, and by gifts from IBM
and Microsoft. Any opinions, findings and conclusions expressed herein are the authors
and do not necessarily reflect those of the sponsors.

References

[1] Adya, A., Gruber, R., Liskov, B., and Maheshwari, U. Efficient optimistic concurrency
control using loosely synchronized clocks. ACM SIGMOD Record 24, 2 (June 1995), 23–
34.

[2] Agesen, O., Detlefs, D., Garthwaite, A., Knippel, R., Ramakrishna, Y. S., and White, D.
An efficient meta-lock for implementing ubiquitous synchronization. In OOPSLA’99 [26],
pp. 207–222.

[3] Aldrich, J., Sirer, E. G., Chambers, C., and Eggers, S. J. Comprehensive synchronization
elimination for Java. Science of Computer Programming 47, 2-3 (2003), 91–120.

[4] Alpern, B., Attanasio, C. R., Barton, J. J., Cocchi, A., Hummel, S. F., Lieber, D., Ngo, T.,
Mergen, M., Shepherd, J. C., and Smith, S. Implementing Jalapeño in Java. In OOPSLA’99
[26], pp. 314–324.

[5] Bacon, D., Konuru, R., Murthy, C., and Serrano, M. Thin locks: Featherweight synchro-
nization for Java. In Proceedings of the ACM Conference on Programming Language
Design and Implementation (Montréal, Canada, June). ACM SIGPLAN Notices 33, 5 (May
1998), pp. 258–268.

[6] Bacon, D. F., Cheng, P., and Rajan, V. T. A real-time garbage collector with low overhead
and consistent utilization. In Conference Record of the ACM Symposium on Principles
of Programming Languages (New Orleans, Lousiana, Jan.). ACM SIGPLAN Notices 38, 1
(Jan. 2003), pp. 285–298.

[7] Blackburn, S. M., and Hosking, A. L. Barriers: Friend or foe? In Proceedings of the ACM
International Symposium on Memory Management (Vancouver, Canada, Oct., 2004), D. F.
Bacon and A. Diwan, Eds. ACM, 2004, pp. 143–151.

172 A. Welc, A.L. Hosking, and S. Jagannathan

[8] Boyapati, C., Lee, R., and Rinard, M. C. Ownership types for safe programming: preventing
data races and deadlocks. In Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (Seattle, Washington, Nov.). ACM
SIGPLAN Notices 37, 11 (Nov. 2002), pp. 211–230.

[9] Carey, M. J., DeWitt, D. J., Kant, C., and Naughton, J. F. A status report on the OO7
OODBMS benchmarking effort. In Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (Portland, Oregon, Oct.).
ACM SIGPLAN Notices 29, 10 (Oct. 1994), pp. 414–426.

[10] Carey, M. J., DeWitt, D. J., and Naughton, J. F. The OO7 benchmark. In Proceedings of
the ACM International Conference on Management of Data (Washington, DC, May). ACM
SIGMOD Record 22, 2 (June 1993), pp. 12–21.

[11] Choi, J.-D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., and Sridharan, M. Efficient
and precise datarace detection for multithreaded object-oriented programs. In Proceedings
of the ACM Conference on Programming Language Design and Implementation (Berlin,
Germany, June). ACM SIGPLAN Notices 37, 5 (May 2002), pp. 258–269.

[12] Clarke, D. G., Potter, J. M., and Noble, J. Ownership types for flexible alias protection.
In Proceedings of the ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (Vancouver, Canada, Oct.). ACM SIGPLAN Notices 33, 10 (Oct.
1998), pp. 48–64.

[13] Flanagan, C., and Freund, S. N. Type-based race detection for Java. In PLDI’00 [27],
pp. 219–232.

[14] Flanagan, C., and Freund, S. N. Atomizer: a dynamic atomicity checker for multithreaded
programs. In Conference Record of the ACM Symposium on Principles of Programming
Languages (Venice, Italy, Jan.). 2004, pp. 256–267.

[15] Flanagan, C., and Qadeer, S. Types for atomicity. In Proceedings of the 2003 ACM SIG-
PLAN International Workshop on Types in Language Design and Implementation (New
Orleans, Louisiana, Jan.). 2003, pp. 1–12.

[16] Flatt, M., Krishnamurthi, S., and Felleisen, M. Classes and mixins. In Conference Record
of the ACM Symposium on Principles of Programming Languages (San Diego, California,
Jan.). 1998, pp. 171–183.

[17] Harris, T., and Fraser, K. Language support for lightweight transactions. In Proceed-
ings of the ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications (Anaheim, California, Nov.). ACM SIGPLAN Notices 38, 11 (Nov. 2003),
pp. 388–402.

[18] Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M. Composable memory transactions.
In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Chicago, Illinois, June). 2005, pp. 48–60.

[19] Herlihy, M. Apologizing versus asking permission: Optimistic concurrency control for
abstract data types. ACM Trans. Database Syst. 15, 1 (1990), 96–124.

[20] Herlihy, M., Luchangco, V., Moir, M., and Scherer, III, W. N. Software transactional mem-
ory for dynamic-sized data structures. In Proceedings of the Annual ACM Symposium on
Principles of Distributed Computing (Boston, Massachusetts, July). 2003, pp. 92–101.

[21] Kung, H. T., and Robinson, J. T. On optimistic methods for concurrency control. ACM
Trans. Database Syst. 9, 4 (June 1981), 213–226.

[22] Manson, J., Pugh, W., and Adve, S. The Java memory model. In Conference Record of
the ACM Symposium on Principles of Programming Languages (Long Beach, California,
Jan.). 2005, pp. 378–391.

[23] Mellor-Crummey, J. On-the-fly detection of data races for programs with nested fork-
join parallelism. In Proceedings of the ACM/IEEE Conference on Supercomputing (Albu-
querque, New Mexico, Nov.). 1991, pp. 24–33.

Transparently Reconciling Transactions with Locking 173

[24] Moss, J. E. B. Nested Transactions: An Approach to Reliable Distributed Computing. MIT
Press, Cambridge, Massachusetts, 1985.

[25] O’Callahan, R., and Choi, J.-D. Hybrid dynamic data race detection. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San
Diego, California, June). 2003, pp. 167–178.

[26] Proceedings of the ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (Denver, Colorado, Nov.). ACM SIGPLAN Notices 34, 10 (Oct.
1999).

[27] Proceedings of the ACM Conference on Programming Language Design and Implementa-
tion (Vancouver, Canada, June). ACM SIGPLAN Notices 35, 6 (June 2000).

[28] Ruf, E. Effective synchronization removal for Java. In PLDI’00 [27], pp. 208–218.
[29] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. Eraser: a dynamic

data race detector for multithreaded programs. ACM Trans. Comput. Syst. 15, 4 (Nov.
1997), 391–411.

[30] Smith, L. A., Bull, J. M., and Obdrzálek, J. A parallel Java Grande benchmark suite. In
Proceedings of the ACM/IEEE Conference on Supercomputing (Denver, Colorado, Nov.).
2001, p. 8.

[31] SPEC. SPECjvm98 benchmarks, 1998. http://www.spec.org/osg/jvm98.
[32] Stonebraker, M., and Hellerstein, J., Eds. Readings in Database Systems, third ed. Morgan

Kaufmann, 1998.
[33] Ungureanu, C., and Jagannathan, S. Concurrency analysis for Java. In Proceedings of the

International Static Analysis Symposium (Santa Barbara, California, Jun./Jul.), J. Palsberg,
Ed. vol. 1824 of Lecture Notes in Computer Science. 2000, pp. 413–432.

[34] von Praun, C., and Gross, T. R. Object race detection. In Proceedings of the ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applications (Tampa,
Florida, Oct.). ACM SIGPLAN Notices 36, 11 (Nov. 2001), pp. 70–82.

[35] von Praun, C., and Gross, T. R. Static conflict analysis for multi-threaded object-oriented
programs. In Proceedings of the ACM Conference on Programming Language Design and
Implementation (San Diego, California, June). 2003, pp. 115–128.

[36] Welc, A., Jagannathan, S., and Hosking, A. L. Transactional monitors for concurrent ob-
jects. In Proceedings of the European Conference on Object-Oriented Programming (Oslo,
Norway, June), M. Odersky, Ed. vol. 3086 of Lecture Notes in Computer Science. Springer-
Verlag, 2004, pp. 519–542.

	Introduction
	A Core Language
	Semantics
	Schedules
	Safety

	Design Overview
	Nesting and Delegation
	Reverting to Mutual Exclusion

	Implementation
	Platform
	Read and Write Barriers
	Detecting Validity
	Revocation
	Versioning
	Example
	Header Compression
	Code Duplication
	Triggering Transactional Execution

	Experiments
	Uncontended Execution
	Contended Execution

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

