Adaptive Data Parallelism for Internet
Clients on Heterogeneous Platforms

Alessandro Pignotti

Scuola Superiore Sant’ Anna, Italy
a.pignotti@sssup.it

Abstract

Today’s Internet is long past static web pages filled with HTML-
formatted text sprinkled with an occasional image or animation.
We have entered an era of Rich Internet Applications executed
locally on Internet clients such as web browsers: games, physics
engines, image rendering, photo editing, etc. Yet today’s languages
used to program Internet clients have limited ability to tap to the
computational capabilities of the underlying, often heterogeneous,
platforms.

In this paper we present how a Domain Specific Language
(DSL) can be integrated into ActionScript, one of the most popu-
lar scripting languages used to program Internet clients and a close
cousin of JavaScript. We demonstrate how our DSL, called ASDP
(ActionScript Data Parallel), can be used to enable data parallelism
for existing sequential programs. We also present a prototype of
a system where data parallel workloads can be executed on either
CPU or a GPU, with the runtime system transparently selecting the
best processing unit, depending on the type of workload as well
as the architecture and current load of the execution platform. We
evaluate performance of our system on a variety of benchmarks,
representing different types of workloads: physics, image process-
ing, scientific computing and cryptography.
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1. Introduction

Today we are in the midst of the multi-core era, but evolution
of computational platforms did not stop with the introduction of
multi-core. Processing units that have been previously only used for
graphics processing, namely GPUs, are rapidly evolving towards
supporting general-purpose computations. Consequently, even a
modestly priced and equipped modern machine constitutes a het-
erogeneous computational platform where execution of what has
been traditionally viewed as CPU workloads can be potentially del-
egated to a GPU.
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At the same time, today’s Internet clients, such as various web
browsers, despite growing demand for computational capabilities
triggered by the rise of Rich Internet Applications, have very lim-
ited ability to utilize computational power available on modern het-
erogeneous architectures. Attempts have been made to enable uti-
lization of multiple cores, via task parallelism [10] or data paral-
lelism [13], but our system is the first solution in this context where
the same data parallel workload can be transparently scheduled on
either a CPU or a GPU, depending on the type of workload as well
as on the architecture and the current load of the underlying plat-
form. We introduce a Domain Specific Language (DSL) !, that in-
tegrates seamlessly with ActionScript, one of the most popular lan-
guages used to program Internet clients. Our DSL, called ASDP
(ActionScript Data Parallel) is compiled to OpenCL, enabling ex-
ecution on a GPU or CPU on platforms that support execution of
OpenCL programs on these processing units. ASDP is also com-
piled back to ActionScript to provide a baseline execution mode
and to support execution of data parallel programs on platforms
that do not support OpenCL. While our solution is based on Ac-
tionScript, it can be adapted to other languages used to program
Internet clients, such as JavaScript, as it does not rely on any lan-
guage features that are specific only to ActionScript.

In summary, this paper makes the following contributions:

e We present a domain specific language, ASDP (ActionScript
Data Parallel) that closely resembles ActionScript and that can
be used to express data parallel computations in the context of
ActionScript. We also discuss ActionScript extensions required
to integrate ASDP code.

We describe the implementation of a prototype system responsi-
ble for compiling and executing ASDP code fragments. A mod-
ified version of the upcoming ActionScript Falcon compiler
[19] translates ASDP code fragments to OpenCL (for efficient
execution on both a CPU and a GPU) and back to ActionScript
(baseline execution mode). A modified version of Tamarin, an
open source ActionScript virtual machine, profiles execution of
the ASDP code fragments and chooses the best processing unit
to execute a given fragment, depending on the type of workload
as well as the architecture and current load of the underlying
platform.

We present a performance evaluation of our system and demon-
strate its ability to both achieve execution times that are close
to those of the best processing unit on a given platform, and
to modify processing unit selection whenever the load of the
execution platform changes.

!'Our language is a DSL in a similar sense to, say, OpenGL[8] — its expres-
siveness is limited and it is focused on a specific domain, that is data parallel
programming.



for (var i:int = 1;
TestArray[0] [i] =
TestArray[1] [i]

}

i < array_rows; i++) {
TrapezoidIntegrate(0.0f, 2.0f, 1000, omega * i, 1);
TrapezoidIntegrate(0.0f, 2.0f, 1000, omega * i, 2);

Figure 1: Series sequential — main loop

TestArray[0] = .TrapezoidIntegrateDP[array_rows, TestArray[0]]
(0.0f, 2.0f, 1000, omega, 1, TestArray[0][0]);

TestArray[1] = .TrapezoidIntegrateDP[array_rows, TestArray[1]]
(0.0f, 2.0f, 1000, omega, 2, TestArray[1][0]);

Figure 2: Series data parallel — parallel call

function .TrapezoidIntegrateDP(x0:float, xl:float, nsteps:int, omega:float,
select:int, firstElement:float):float {
if (index == 0) return firstElement;

var omegan:float = omega * index;

return TrapezoidIntegrate(x0, x1, nsteps, omegan, select);

}

Figure 3: Series data parallel — kernel definition

2. Motivation

Data parallelism is one of the more natural ways of introducing par-
allelism in the context of scripting languages, such as ActionScript,
as support for data parallelism can be restricted to automatically
prevent problems related to managing access to shared memory,
such as data races, resulting in safer and more robust programs,
which preserves the spirit of scripting languages used to program
Internet clients. It is also often easy to parallelize sequential loops
using data parallel constructs, with little modifications to the ex-
isting code. One of our main goals when developing our solution
was to make it convenient to use by “scripters” and yet powerful
enough to deliver significant performance gains at the cost of rela-
tively little programming effort. We argue the first point, the ease of
use, below by describing modifications required to parallelize one
of the benchmarks used for our performance evaluation . We argue
the second point, performance, in Section 5.

We demonstrate how a sequential program can be parallelized
using data parallel constructs available in our system using as an ex-
ample the Series benchmark from Tamarin’s jsbench performance
suite [23], computing a series of Fourier coefficients. Even though
data parallel computations in our system are expressed in ASDP
and not in “full” ActionScript, due to close similarity between these
two languages, the data parallel version of the Series benchmark is
almost identical to the sequential one. The difference between the
two versions includes replacement of the original version’s sequen-
tial loop responsible for performing a trapezoid integration (Figure
1) with a definition (Figure 3) and an invocation (Figure 2) of a data
parallel function implementing the same functionality. The total of
4 lines of code have been removed and 11 added, with over 200 left
intact.

In order to facilitate understanding of the example, we briefly
describe our support for data parallelism below and and then ex-
pand it in Section 3.

2 Clearly, the number of modifications vary depending on the specifics of a
given program as, for example, not all data types available in ActionScript
are supported in ASDP.
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2.1 Data parallelism support overview

The style of data parallelism supported in our system is similar to
that defined by OpenCL [7] or CUDA [18]. Parallel computation
is defined by a special data parallel function called kernel, but the
programming model is simplified to better suit the requirements of
a scripting language setting, as OpenCL’s and, arguably to a lesser
extent, CUDA’s formulations are quite low level and thus some-
what difficult to use. In particular, when compared to OpenCL, we
relieve the programmer from the burden of explicitly setting up de-
vices for kernel execution, managing command queues and creat-
ing buffer objects for kernel argument passing — all of these tasks
are automatically handled by our runtime.

In our system kernel definitions are similar to ActionScript
functions definitions — kernels are distinguished by a “dot” symbol
preceding their name (eg. the .TrapezoidIntegrateDP kernel
definition in Figure 3). The kernel’s code is executed in parallel for
each point in a single-dimensional index space — conceptually it is
equivalent to executing the kernel’s code inside of a parallel loop
with the number of iterations equal to the size of the index space.
A given point in the index space is identified by a built-in variable
index of type int, ranging from O to the size of the index space.
We say that a kernel is evaluated after its code is executed for all
points in the index-space. Even though kernel return type in Figure
3 is defined as float, the actual result of the kernel’s evaluation is
a vector of float values, with each separate float value representing
the result of the computation at a given point in the index space.

The kernel example presented in Figure 3 uses only variables
and passed-by-value arguments of types that are also available in
ActionScript — we use an upcoming version of the language that
features the float type with a standard IEEE 754 [12] seman-
tics. Please note, that the kernel utilizes the unmodified original
function used to perform trapezoid integration, which significantly
contributes to the ease of the parallelization effort. The reason for
introducing the special case for index 0 in the first line of the ker-
nel is that the first element of the result is computed outside of the
original loop — we simply assign it here to the appropriate element
of the kernel’s output.

The invocation of the .TrapezoidIntegrateDP kernel from
the ActionScript level is presented in Figure 2. It strongly resembles



a regular function call, but takes two special additional arguments
specified between the square brackets — the first describes the size
of the index space and the second specifies a vector of float values
to be used to store the output of the kernel’s evaluation (TestArray
is defined in the original version of the benchmark as a vector of
vectors of float values).

3. Language

Data parallel computations supported in our system are expressed
in a Domain Specific Language (DSL) we call ASDP (ActionScript
Data Parallel). The description of ASDP and of the extensions re-
quired to embed ASDP kernels into ActionScript programs, build-
ing on the overview presented in Section 2.1, is presented below.

3.1 ASDP

The basic units of data parallel execution in our system, that is ker-
nels, are written in ASDP, which has been designed to closely re-
semble ActionScript, making embedding ASDP kernels into Ac-
tionScript source code feel natural.

In order to enable efficient execution of ASDP kernels on GPUs,
ASDP removes certain features of ActionScript, while trying to
preserve the overall ActionScript look and feel. ASDP supports
ActionScript-style control-flow constructs (such as loops or condi-
tionals), local variable declarations, function invocations and equiv-
alents of ActionScript primitive types with the exception of Number
(ie. uint, int, Boolean, float, float4). On the other hand,
ASDP does not support dynamic memory allocation, recursion
(both direct and indirect) 3, objects, closures or global variables.
Despite these restrictions, as demonstrated by successful paral-
lelization of our benchmarks, ASDP is fully capable of expressing
realistic workloads. Similarly to other data parallel languages such
as OpenCL or CUDA, ASDP also includes support for additional
vector types that allow programmers to take direct advantage of
vector processing support often available on modern architectures.
The following types are available in ASDP :

e primitive types: char and uchar (signed and unsigned 8-bit
integer), short and ushort (signed and unsigned 16-bit inte-
ger, int and uint (signed and unsigned 32-bit integer), float
(single-precision floating point number)

e vector types: vectors of 2, 4, 8, or 16 values of every supported
primitive type — the name of each such type consists of the name
of the primitive type value followed by the number of values
in a given vector, for example: char2, float4 or ushort8 or
int16, etc.

e array types: arrays containing either primitive values or vector
values — the name of each such type consists of the name of the
primitive or vector type value followed by the word “Array”, for
example: uintArray, char2Array, float4Array, etc.

The return value of a kernel, that is a value resulting from
executing a kernel’s code for a single point in the index space,
can be of any type supported by ASDP. These separate values
are assembled together into a single data structure containing the
result of the entire kernel evaluation and then made available to the
ActionScript code as described in Section 3.2.

Please also note that kernels can directly call previously defined
ActionScript functions, as long as the ActionScript functions re-
spect ASDP restrictions described earlier in this section (no dy-
namic memory allocation, no recursion, etc.). As an example, con-
sider the . TrapezoidIntegrateDP ASDP kernel function in Fig-
ure 3 calling the .TrapezoidIntegrate ActionScript function

3 This restriction is also imposed by OpenCL and older versions of CUDA
due to limitations of GPU hardware.
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defined in the original sequential version of the program perform-
ing trapezoid integration.

3.2 ActionScript extensions

Scheduling execution of ASDP kernels from the level of Action-
Script resembles very strongly invocation of standard ActionScript
functions. In the simplest form, one must specify only one addi-
tional “special” parameter, the size of the index space, which is
specified between square brackets preceding the argument list. Let
us consider a very simple kernel, .init_kernel, as an example:

function .init_kernel():int {
return 42;

}

The following invocation of . init_kernel schedules execution of
the kernel’s code for every point in 1000-element index space — its
evaluation results in a byte array allocated internally by the runtime
containing 1000 integers, each equal to the value 42:

var output:ByteArray = .init_kernel[1000]();

The reason that the kernel evaluation result is a byte array is that
ByteArray is the only ActionScript-level data type that is capable
of encoding all ASDP vector and array types described in Section
3.1. Clearly, this can be suboptimal as further data transformations
can be required at the ActionScript level, for example to transform
a byte array to a “regular” ActionScript array. For that reason,
to at least partially ease the programming burden due to possible
subsequent data transformations, for the kernel return types that
have their direct ActionScript equivalents (ie. float, float4, int
and uint) we also support kernel evaluation yielding a result that
is of ActionScript Vector type. This functionality is supported
by explicitly passing the output vector as the second “special”
parameter:

var output:Vector.<int> = new Vector.<int>(1000);
output = .init_kernel[1000, output] ();

Similarly to the previous example, the .init_kernel invocation
schedules execution of the kernel’s code for every point in 1000-
element index space, but this time its evaluation results in a 1000-
element ActionScript Vector of integers, each equal to the value
42.

In order to understand how parameters are passed to kernels, let
us consider another simple kernel, .sum_kernel, that takes two
arguments of type intArray, which have no equivalents at the
ActionScript level:

function .sum_kernel(inl: intArray,
in2:intArray ):int {
return inl[index] + in2[index];

}

We handle parameter passing similarly to how we handle kernel
evaluation results — at the ActionScript level the input parameters
are represented by appropriately populated byte arrays. When in-
voking .sum_kernel, at the ActionScript level the arguments will
be represented by two byte arrays containing the number of integer
values equal to the size of the index space specified at the kernel’s
invocation:

var inl:ByteArray =

var in2:ByteArray = new ByteArray();

for (var i:uint = 0; i < 1000; i++) {
inl.writeInt(42); in2.writelInt(42);

new ByteArray();

}
output:ByteArray = .sum_kernel[1000] (inl, in2);

This invocation yields a byte array containing 1000 integers, each
equal to the value 84.



4. Implementation

Our solution is fully integrated into the existing ActionScript tool
chain. We modified the upcoming ActionScript Falcon compiler
[19], soon to be open-sourced, to translate programs containing
ASDP kernels to abcFiles which store ActionScript Byte Code
(ABC) [1], and are loaded and executed by the ActionScript vir-
tual machine. We also modified the open-source production Ac-
tionScript virtual machine, Tamarin, to support execution of ASDP
kernels and to dynamically choose the optimal processing. Con-
sequently, programmers can keep using tools already familiar to
them, which should have a great positive effect on their productiv-

1ty.
4.1 Compilation

As the ASDP language closely resembles ActionScript, only mod-
erate changes to the compiler’s code have been necessary. We mod-
ified the existing ActionScript parser to support kernel definitions
(special “dot” symbol preceding the name of the kernel) and their
invocations (specification of “special” parameters described in Sec-
tion 3.2).

Falcon compiles an ASDP kernel into two different formats:
OpenCL (so that it can be executed by either a CPU OpenCL driver
or a GPU OpenCL driver) and ABC (so that it can be executed
sequentially such as any other ActionScript function).

4.1.1 OpenCL

From one point of view, ASDP can be considered as a variant of
OpenCL language lifted to a higher level of abstraction — it omits
many of the low-level aspects of OpenCL language, such as im-
age types, address space qualifiers, or attributes. Consequently,
compilation from ASDP to OpenCL language is rather straight-
forward, as all ASDP types have their direct OpenCL equiva-
lents (eg. char, int2, float16), possibly with different names
(eg. ASDP’s intArray is OpenCL’s array). ASDP’s built in vari-
able index, described in Section 2.1, is translated into OpenCL’s
get_global_id(0), which is used to identify a position in the
single-dimensional index space* during OpenCL execution. Fi-
nally, evaluation of an OpenCL kernel, similarly to an evaluation
of an ASDP kernel, returns a set of values, each representing the
result of the kernel’s execution at a given point in the index space,
which makes translation of the evaluation results straightforward.
The compiler has been modified to express translated OpenCL
code as a string, so that the virtual machine can pass it directly
to an OpenCL driver for execution. In order to keep ABC format
modifications to the minimum, we embed the strings representing
OpenCL kernels into the ABC’s constant pool which is directly
referred to from the modified ABC’s MethodBodyInfo descriptor,
and can be easily found during ABC parsing by the virtual machine.

4.1.2 ABC

From another point of view, ASDP is a language similar to “stan-
dard” ActionScript . Consequently, translation of ASDP kernels
back to ActionScript was not complicated. A kernel is translated
to a “standard” ActionScript function, that is executed by the vir-
tual machine in a loop, and takes the index variable as an ex-
plicit parameter. The ASDP array and vector types (see Section 3.1)
that do not exist in ActionScript are translated to ActionScript’s
ByteArray and to appropriate ActionScript’s Vector types, re-
spectively, with all array and vector operations translated accord-
ingly. Unfortunately, at this point we cannot completely correctly

4 At this point we only support single-dimensional index space as it allows
programmers to express a range of algorithms while remaining simple to
reason about, but there are no technical obstacles to supporting two- or
three-dimensional index spaces.
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translate all ASDP primitive types to their ActionScript equiva-
lents, as ActionScript support for integer types is somewhat non-
standard (eg. a result of an operation on two ints can overflow
to a Number), but we have not experienced any problems related
to this fact when translating our sample applications. The Action-
Script function compiled from a given kernel retains the kernel’s
type. As a result, the final kernel evaluation result in this case must
be assembled by the virtual machine from individual function exe-
cutions inside the loop.

4.2 Adaptivity

Tamarin can choose to execute a given kernel in three different
modes: sequentially using the kernel’s code translated back to Ac-
tionScript , in parallel using the OpenCL CPU driver and in parallel
using the OpenCL GPU driver.

The first time a given kernel is invoked for a given index space
size, no information about its previous runs is available. Conse-
quently, during the first three executions, Tamarin schedules exe-
cution of the kernel in each of the three different modes to gather
initial profiling data.

Based on the data gathered during the first three runs, the opti-
mal mode (the one that executed the kernel fastest) is chosen to
evaluate the kernel in the future, but all modes are periodically
sampled to detect changes in the execution environment. Tamarin
takes into consideration that effectiveness of non-optimal modes
may be orders of magnitude worse than that of the optimal mode,
and chooses sample ratios for non-optimal modes such that the
total overhead compared with the execution in the optimal mode
does not cross a certain threshold. There is a trade-off between the
threshold size and the time it takes the scheduler to react to execu-
tion environment changes — the smaller the threshold, the less fre-
quently the non-optimal modes are sampled, which makes the reac-
tion time longer. We currently use a threshold of 10%. The process
of re-evaluating the optimal mode and re-calculating a sampling
ratio is repeated after each sampling run.

As the execution of a given kernel progresses, the scheduler no
longer must rely on just the execution time from the previous run,
but can utilize historical data to compute an estimated time. Cur-
rent estimated time data is stored per-kernel in a separate bucket
for each index space size range. Buckets are of non-uniform capac-
ity and grow exponentially with the index space size. The “new”
estimated time is computed by combining the freshly measured ex-
ecution time information (from the run that has just finished execut-
ing) with the “previous” estimated time using the following formula
(prevEstimatedTime is in turn an aggregate of all past execution
times computed using the same formula — in our system o = 0.5):

a * measuredTime + (1 — a) * prevEstimatedTime

Timing data is acquired using high resolution timers provided by
the processor.

The scheduler computes the sampling ratios by calculating how
many executions in the optimal mode should happen before doing
a profiling run in any of the modes. This number of executions N is
computed for a given execution mode after its respective sampling
run computes its current estimated time (and thus current best time
is known as well), using the following formula:

overhead

N 4= maz ({bestTime * (10%/2)—‘ ’ 1> ’

where overhead < estimatedlime — bestTime

Intuitively, the larger the overhead in the fraction’s numerator,
the larger the number of iterations before a given mode will be sam-
pled again. The formula uses half of the specified overhead since
there are two non-optimal modes and an equal share of the overhead
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must be assigned to each of these modes. The max operator is used
to make sure at least one run occurs between each sampling run so
that the computation progresses. It is straightforward to prove that
using this formula we can indeed bound the total overhead over a
certain number of executions to 10% (see Appendix A).

4.2.1 Initial sampling runs optimization

Since kernel evaluation times in different modes can differ by or-
ders of magnitude, initial sampling performed during the first three
kernel runs may incur an amount of overhead that will not be amor-
tized until thousands of subsequent kernel evaluations are finished.
Therefore, instead of sampling the first three whole kernel evalu-
ations, we sample only a part of the whole kernel evaluation that
occurs over a subset of the entire index space. We then extrapo-
late the total evaluation time for each mode, execute the rest of the
kernel using extrapolated optimal mode, and use the resulting data
to initialize the scheduling algorithm. Clearly, additional modifica-
tions were required to support partial kernel evaluations, but they
were moderate — the main idea is to pass an additional parameter
to the kernel that specifies the current offset in the kernel’s index
space.

5. Performance evaluation

When evaluating our system we focus on two important perfor-
mance characteristics. The first is the average performance of the
adaptive scheme with the runtime dynamically choosing the best
execution scheme from the available options. The second is the be-
havior of our system under varying machine load.
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We evaluated our system using four benchmarks representing
different types of workloads (cryptography, physics, image pro-
cessing, scientific):

1. CRYPT - IDEA encryption algorithm (from Tamarin’s jsbench
suite [23])

2. PARTICLES - particle simulation (adapted from the “RGB
Sinks and Springs” [14] demo)

3. BLUR - blur filter (adapted from the PIXASTIC image pro-
cessing library [20])

4. SERIES — a series of Fourier coefficients computation (from
Tamarin’s jsbench suite [23])

For each (initially sequential) benchmark a data parallel portion
of the code was identified and translated into a definition and an
invocation of an ASDP kernel.

In some cases the translation process was straightforward, for
example in the case of the SERIES benchmark described in Section
2, in some others the need to satisfy the ASDP restrictions made it
more elaborate but never very complicated and largely mechanical.
For example, the original version of the “RGB Sinks and Springs”
application (and thus the sequential version of the PARTICLES
benchmark), the input data was encoded as ActionScript objects
that are not supported in ASDP — the data parallel version has been
modified to encode the input data as byte arrays.

The two versions of each benchmark (original and data parallel)
enabled 5 different execution configurations:

1. ORG - sequential execution of the original benchmark
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2. SEQ - sequential execution of the parallelized benchmark (as
described in Section 4, ASDP kernels are translated back to
“pure” ActionScript code)

3. O-CPU - parallel execution of the parallelized benchmark uti-
lizing OpenCL CPU driver only

4. O-GPU - parallel execution of the parallelized benchmark uti-
lizing OpenCL GPU driver only

5. DYN - parallel execution of the parallelized benchmark where
the runtime dynamically and automatically chooses the best
execution mode between SEQ, O-CPU and O-GPU

As ASDP at this point does not support double-precision floating
point data, all benchmarks have been modified to use only single-
precision floats. Each benchmark features only a single execution
of a kernel during its timed run so that during executions in the
DYN configuration we can determine if the kernel was executed se-
quentially or in OpenCL (on either a GPU or a CPU). This required
modifying the CRYPT and SERIES benchmarks to remove the sec-
ond kernel invocation (along with respective portion of the compu-
tation in the original sequential version of the benchmark), which
does change the result computed by the benchmarks, but does not
lead to a loss of generality in terms of performance results gener-
ated.

We used two different machines to evaluate our system, each
with quite dramatically different performance characteristics. The
first was a 2.93GHz Intel Xeon Mac Pro (2 CPUs x 6 cores) desktop
machine with a discrete AMD Radeon HD 5770 GPU card, running
Mac OS X 10.6.8 in 32GB of RAM. The second was a laptop
featuring AMD Fusion E-450 APU (a single 2-core 1.54GHz CPU
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and the AMD Radeon HD 6320 GPU integrated on on the same
die), running Windows 7 Home Premium in 4GB of RAM.

5.1 Average Performance

In Figures 4-9 we plot execution times (averaged over 100 itera-
tions within the same virtual machine invocation) for the O-CPU,
O-GPU and DYN configurations, normalized with respect to the
execution time of the ORG configuration °. Figures 4-6 plot exe-
cution times on the desktop and Figures 7-9 plot execution times
on the laptop for different sizes of the index space (and thus of the
output): small, medium and large — each larger by an order of mag-
nitude from the preceding one. We omit the execution times for the
SEQ configurations as, despite our initial hope that the SEQ config-
uration can be competitive for small kernel sizes, they were never
faster than either O-CPU, O-GPU or DYN configurations.

The first conclusion that can be drawn from analyzing Fig-
ures 4-9 is that all OpenCL configurations are much faster than
the execution of the original sequential benchmarks (ORG) against
which they have been normalized. On the desktop, execution of
the CRYPT benchmark’s O-GPU configuration for the small index
space is only a little over 2x faster than the original sequential ex-
ecution, but the remaining desktop benchmark configurations are
at least 6x faster, with all the laptop configurations being at least
3x faster than their original sequential counterparts. The relatively
weak performance of the CRYPT benchmark’s O-GPU configura-
tion for the small index space on the desktop is due to small input
size resulting in short computation time that cannot take full ad-
vantage of available GPU parallelism. Other than the introduction

5 In other words, we divide execution times of the O-CPU, O-GPU and DYN
configurations by the execution time of the ORG configuration.
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of parallelism, the main reason for the performance difference is
that ASDP removes almost all dynamic features of ActionScript ,
which results in much faster code.

The second conclusion is that different OpenCL configurations
fixed to the same processing unit behave differently on different
hardware configurations. On the desktop, in most cases the O-CPU
configuration is faster than the O-GPU configuration, due to the
GPU card being a discrete component and high CPU-GPU com-
munication cost. The only exception from that rule is the SERIES
benchmark, as the size of its input data is very small, and the ben-
efit of the higher degree of parallelism on a GPU outweighs the
communication costs for larger sizes of the index space. On the
other hand, on the laptop, in many cases the same O-CPU config-
uration is slower than the O-GPU configuration, as both the CPU
and the GPU are integrated on the same die, which significantly re-
duces the communication cost. The O-CPU configuration can still
be faster than the O-GPU configuration whenever the benefit of the
higher degree of parallelism available on a GPU has a lower impact
(eg. for smaller index space sizes).

Finally, we observe that in all cases the dynamic configuration
(DYN), which automatically chooses the best processing unit to
execute a given workload, closely trails the best configuration for
a given machine, benchmark, and index space size. We do not
always meet the 10% overhead threshold because the cost of the
initial sampling run is not always amortized over the 100 kernel
evaluations.

5.2 Adaptive Performance

In addition to choosing the best processing unit for a given work-
load on a given hardware platform in a “steady” state (where a
given workload executes at least a few times to obtain initial pro-
filing information), our system also adapts to varying machine load
by switching between processing units depending on how heavily
(or lightly) loaded they are at any given time during execution.

We used the PARTICLES benchmark executing on the laptop as
our case study to demonstrate that our system is indeed capable
of this kind of behavior.

In our experimental setup the PARTICLES benchmark is exe-
cuted for 600 iterations, with the GPU load changing from light
to heavy and then back to light. The GPU load is created by exe-
cuting the GPU Tropics benchmark [25] based on the Unigine 3D
engine [24]. It is worth noting that while the Tropics demo mostly
increases the load on the GPU, it also affects CPU execution by
increasing its load by 10-15%.

The execution time and the processing unit’ are recorded sepa-
rately for every iteration. After the first 200 iterations the execution
of the Tropics demo is triggered by the runtime, and after the fol-
lowing 200 iterations the execution of the demo is terminated, both
actions implemented utilizing OS-level facilities available to the
runtime. An additional amount of wait time is given after the exe-
cution of the demo is triggered and after it is terminated, to make
sure that these actions have sufficient time to complete, but please
note that this wait time has no effect on the benchmark execution
times as these are measured individually.

In Figures 10-11 we plot execution times for each of the 600
iterations (the number of iterations constitutes the “timeline” for
the entire execution) of the DYN configuration of the PARTI-
CLES benchmark for the MEDIUM and LARGE sizes of the in-

©Some benchmarks never switch their execution modes, especially those
executed on the desktop, but some others (eg. BLUR) exhibit very similar
dynamic behavior.

71In the first iteration it is actually the fastest execution unit that is reported
as this processing unit is chosen to finalize execution of the first optimized
profiling run, as described in Section 4.2.1.
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dex space ®. The color grey represents CPU executions and black
GPU executions. In both cases, execution moves from the GPU to
the CPU shortly after it is detected that the GPU is heavily loaded
(ie. after the first 200 iterations). After the GPU load comes back
to normal (ie. after the first 400 iterations), execution eventually
switches back to the GPU — more quickly if the difference between
CPU and GPU execution is larger (Figure 11 — right before iter-
ation 450) and less quickly if the difference is smaller (Figure 10
— close to iteration 600). For comparison, we present equivalent
graphs (same load) for the O-CPU configuration in Figures 12-13
and for the O-GPU configuration in Figures 14-15.

The conclusion is that our system is not only capable of adapting
to varying machine load, but also that under a varying machine load
the adaptive DYN configuration is on average faster than both the
O-CPU and O-GPU configurations (respectively 102ms, 120ms,
337ms for the MEDIUM index space size and 573ms, 873ms,
708ms for the LARGE index space size).

6. Related Work

There is a large body of related work in the area of data parallel
programming, including what are arguably the closest approaches
to our work, that is attempts to introduce data parallelism to high
level languages. Examples include CopperHead [3] (Python), Ac-
celerator [21] (NET), Lime (Java) [6], Aparapi [22] (Java), Accel-
erate [4] (Haskell), Nikola [17] (Haskell), and Data Parallel Haskell
[5]. The data parallelism support provided by the RiverTrail project
[13] seems to be the closest to our proposal. RiverTrail expresses
data parallelism in “pure” JavaScript, but while it can be considered
equivalent in terms of expressiveness to our own solution, despite
also compiling data parallel constructs to OpenCL, their system
currently does not support execution on a GPU [11]. WebCL [9]
is another example of a solution that supports data parallel pro-
gramming in JavaScript—it is a JavaScript binding to OpenCL. The
WebCL'’s programming model is then identical to that of OpenCL’s
and thus equally low level. The main difference between all the so-
lutions mentioned above and our system is that, to the best of our
knowledge, none of them supports automatic selection of the opti-
mal processing unit or adaptive processing unit switching.

Another notable piece of the related work is the Qilin system
[16]. Qilin introduces an API for C++ that allows programmers to
specify parallel computations and supports utilization of multiple
processing units for a given workload, including adaptivity to hard-
ware changes. However, Qilin utilizes source-to-source translation
and requires manual training runs which make its practical appli-
cation questionable. Furthermore, Qilin’s scheduler is incapable of
reacting to machine load changes, but only to physical swapping of
hardware components.

Lee et al. [15] present a framework for implementing a mul-
titude of DSLs targeting heterogeneous platforms. In comparison,
our approach emphasizes a very close relationship between the host
language and the DSL, where we see the highest chance of increas-
ing programmer comfort and adoption. Furthermore, our execution
scheduler is reactive, sampling-based whereas theirs is predictive,
based on platform parameters.

Finally, Binotto et al. [2] describe a system where OpenCL is
used as the primary programming model, and which does support
automatic co-scheduling between a CPU and a GPU. Their ap-
proach, however, targets mainly scientific computing, at least par-
tially due to the low-level nature of the OpenCL model, focuses on
utilization of the entire platform rather than selection of the opti-

8 We omit the plot for the SMALL size of the index space, as the PARTI-
CLES benchmark on the laptop executes faster on the CPU for this index
space size in the first place (see Figure 7) and increasing the GPU load has
no chance of triggering any processing unit switch.



(N — 1) % bestTime + estimatedTime < N * bestTime + N * bestTime * (10%/2)

Figure 16: Equation used to derive number of executions in optimal mode
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Figure 17: Derivation demonstrating that sampling overhead is bounded

mal processing unit, and does not support dynamic adaptation to
varying machine load.

7. Conclusions

In this paper we have presented a prototype of a system that utilizes
a new Domain Specific Language, ASDP (ActionScript Data Par-
allel) to introduce data parallelism in the context of ActionScript.
Programs including ASDP kernels are compiled and executed us-
ing the standard ActionScript tool chain, with the Falcon compiler
and the Tamarin virtual machine being appropriately modified. We
have also shown that some programs can be easily modified to use
ASDP’s data-parallel constructs (see Section 2.1) and that Action-
Script programs parallelized using ASDP can be multiple times
faster than their sequential counterparts.

A. Appendix

The formula used to compute how many executions in the optimal
mode should happen before doing a profiling run in any given
mode is derived from the equation presented in Figure 16, where
estimatedTime is the execution time for a given mode predicted
based on the current execution time measurement combined with
“historical” data for this particular mode, and bestT'ime is the
shortest of all estimated times representing execution in the optimal
mode (for details of the scheduler description see Section 4.2).
Intuitively, the time to execute N — 1 runs in optimal mode plus
the time to execute one run in the non-optimal mode should be
smaller than IV executions in optimal mode plus certain overhead
(in this case — 10%). As mentioned in Section 4.2, the formula uses
half the specified overhead since there are two non-optimal modes
and an equal share of the overhead must be assigned to each of
them. This equation is easily converted into the following form,
which directly represents the formula presented in Section 4.2 (the
formula chooses the smallest such N):

estimatedTime — bestTime
bestTime x (10%/2)

N >

Let t; (for ¢ = 1 : 3) represent the current estimated execution
times for each execution mode. Let us assume, without loss of
generality, that min(t1,t2,t3) == t1 == bestTime. Let O;
(= ti — bestTime) represent the execution overhead for each
execution mode. We can now express the number of executions
that should happen before doing a profiling run in mode ¢, by
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transforming the formula from Section 4.2 to the following form:

Oi
N; + max ([bound-‘ ,1) ,

where bound < bestTime x (10%/2)

We will now show that the total overhead compared to the execu-
tion in optimal mode, for a certain period P is indeed no larger than
10%.

Let us choose period P = Np * N3 * N3. The total execution
time over this period (totallime) is equal to the time spent in
sampling runs plus the time spent executing the remaining runs in
the optimal mode (the number of sampling runs for a given mode
is equal to the length of period P divided by the number of optimal
runs between each sampling run for a given mode):

Pt1+Pt2+Pt3+ P P+P+
N1 N2 N3 Nl N2 NS

Let optimalTime (= P * bestTime) represent the time to
execute P runs in the optimal mode. Then, the total overhead can
be expressed as follows:

> bestTime

totalTime — optimalTime

totalOverhead = s -
optimalTime

Considering that t1 == bestTime and assuming that Oz > 0 and
Os > 0, derivation presented in Figure 17 shows that sampling
overhead is indeed no larger than 10%.
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