
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Optimistic Concurrency Control for
Real-world Go Programs

Zhizhou Zhang, University of California, Santa Barbara; Milind Chabbi and
Adam Welc, Uber Technologies; Timothy Sherwood, University of California, Santa Barbara

https://www.usenix.org/conference/atc21/presentation/zhang-zhizhou

Optimistic Concurrency Control for Real-world Go Programs

Zhizhou Zhang1, Milind Chabbi2, Adam Welc2, and Timothy Sherwood1

1University of California, Santa Barbara
1{zhizhouzhang, sherwood}@cs.ucsb.edu

2Programming Systems Group, Uber Technologies
2{milind,adam.welc}@uber.com

Abstract
We present a source-to-source transformation framework,
GOCC, that consumes lock-based pessimistic concurrency pro-
grams in the Go language and transforms them into optimistic
concurrency programs that use Hardware Transactional Mem-
ory (HTM). The choice of the Go language is motivated by
the fact that concurrency is a first-class citizen in Go, and it
is widely used in Go programs. GOCC performs rich inter-
procedural program analysis to detect and filter lock-protected
regions and performs AST-level code transformation of the
surrounding locks when profitable. Profitability is driven by
both static analyses of critical sections and dynamic analysis
via execution profiles. A custom HTM library, using percep-
tron, learns concurrency behavior and dynamically decides
whether to use HTM in the rewritten lock/unlock points. Given
the rich history of transactional memory research but its lack
of adoption in any industrial setting, we believe this workflow,
which ultimately produces source-code patches, is more apt
for industry-scale adoption. Results on widely adopted Go
libraries and applications demonstrate significant (up to 10⇥)
and scalable performance gains resulting from our automated
transformation while avoiding major performance regressions.

1 Introduction

Golang [46] (or simply Go) is a modern programming
language that has gained significant popularity over the last
decade. It is being used to write enterprise software [20] (e.g.,
to implement backend services) in some of the largest tech-
nology companies as well as to develop large and widely used
open-source applications (e.g., Kubernetes [47]) and libraries
(e.g., Tally [88]). The design of Go is inspired by C, but unlike
C, it supports concurrency as the first-class language construct.
Even more importantly, and unlike other popular languages
with first-class concurrency support (e.g., Java), the Go
language goes to great lengths to simplify concurrent program-
ming by making concurrency easy to use (and thus frequently
used) by the developers [86] — any function in Go can be

scheduled to execute concurrently with the rest of the code as a
goroutine [46] by simply prefixing its call with the go keyword.

Although Go makes writing concurrent programs easier,
it still requires programmers to manage interactions between
concurrently executing code — this can be accomplished
either via passing messages through channels [46] or explicitly
synchronizing accesses to shared memory. Shared memory is
used more often than message passing by Go developers, and
mutual exclusion via locks [11] remains the most widely-used
synchronization mechanism across several applications [86].
It is, therefore, the focus of our work.

Locks may unnecessarily serialize concurrent execution,
even if the code operates on disjoint data. Our work aims to
improve the performance of concurrent Go code, particularly
code hiding behind needlessly held locks. Our goal is to
accomplish this while retaining the correctness of concurrent
execution. We utilize the concept of transactional memory
(TM) [53] to achieve this goal. The general idea behind TM
is to decide on whether two (or more) pieces of code can be
executed concurrently based on whether their accesses to the
underlying data are conflicting [54] or not, that is, if at least one
of the accesses is a write. Conflict-free executions are allowed
to proceed in parallel. On the other hand, upon encountering
a data access conflict, execution effects of at least one piece of
code have to be rolled back (i.e., undone), and the computation
must be restarted. TM machinery, which originally started
in software (STM) [43, 77, 82, 93], is now available in
commodity hardware as Hardware Transactional Memory
(HTM) [41, 90, 92]. However, despite almost three decades
of work in this area, TM’s promise of accelerating concurrent
computations for real-life software has not been quite fulfilled.
We speculate that there are two reasons why this is the case.

The first reason is that TM, while being a single concept, may
have different realizations in terms of algorithms and imple-
mentations (e.g., eager vs. lazy versioning [80]) and different
integration strategies at the language level (e.g., API-level
solutions [77] or the compiler-assisted atomic construct used
to demarcate TM-managed concurrent code [52]), resulting in
different behavior from the programmer’s perspective. Conse-

USENIX Association 2021 USENIX Annual Technical Conference 939

quently, attempts to introduce TM as a separate language-level
mechanism lead to significant semantic dissonance with
respect to existing concurrency-related mechanisms [69, 79].

The second reason is that a lot of TM (particularly STM)
work was focusing on designing and implementing TM
algorithms but limiting empirical evaluation to synthetic
benchmarks (e.g., STMBench7 [51]) or measuring the
performance of only selected concurrent data structures. Un-
fortunately, unlike what was expected, TM techniques did not
easily generalize to real-life applications [93]. A few attempts
to apply TM to production code were unsuccessful (e.g., an
attempt to rewrite the Quake game server to use TM [97]).

In this work, we attempt to rectify some of these limitations
and show that TM can be effective in accelerating real-life
concurrent code. We focus less on the algorithmic side of TM
(we use state-of-the-art off-the-shelf HTM implementation
from Intel), and more on how and when to apply the TM
machinery to maximize the benefit. Additionally, we replace
Go locks with HTM constructs without changing the code’s
behavior in any way, which allows us to completely bypass
complications related to transactional memory semantics.
More specifically, we employ transactional lock elision
(TLE) [73] — a well-known technique that attempts to
execute a lock-protected critical section as an atomic hardware
transaction, reverting to using the lock if these attempts fail.

Figure 1 depicts our solution. At a high level, our solu-
tion starts with using static analysis to identify candidate
lock-protected critical sections to be instead protected by
the HTM. Then we filter out non-desirable candidates using
both static analyses (e.g., to eliminate regions containing I/O
operations) and dynamic analysis (to eliminate regions where
the application of the HTM would not be beneficial based on
profile data collected at runtime). Finally, we rewrite the code
to have candidate regions use HTM constructs provided by the
HTM library we developed instead of Go locks [11]. GOCC
transformations are guaranteed to be safe; developer involve-
ment is optional but highly recommended to let developers
ultimately decide whether or not they want to use HTM.

In summary, this paper makes the following contributions:
1. We present the design and implementation of a framework

for identifying lock-protected critical sections and select
the best candidates for lock elision based on static analysis
and execution profiles of Go programs.

2. We describe the source-to-source code transformation to
replace mutual-exclusion locks in Go programs with HTM
concurrency control constructs.

3. We introduce a library extending vendor-provided HTM
primitives with intelligent features such as runtime con-
tention management. Specifically, we devise a lightweight
perceptron [59, 84] that learns whether eliding a lock via
HTM at a call site [50] is beneficial at runtime.

4. We demonstrate the effectiveness of GOCC for improving
performance of real-life concurrent Go code by up to 10⇥.

m:=&sync.Mutex{}
for cond {
 m.Lock()
 …
 m.Unlock()
 …
 m.Lock()
 fmt.Printf(“Hi”)
 m.Unlock()
}
m.Lock()
…
defer m.Unlock()

l:= OptiLock{}
m:=&sync.Mutex{}
for cond {
 l.FastLock(m)
 …
 l.FastUnlock(m)
 …
 m.Lock()
 fmt.Printf(“Hi”)
 m.Unlock()
}
m.Lock()
…
defer m.Unlock()

FastLock  
 (m *mutex)
{..}

FastUnlock
(m *mutex)
{..}

OptiLib

Dropped for
low execution

count

Dropped for
HTM-unfriendly

code (printf)

Valid candidate
with

frequent use

Input: example.go Output: example.go

Analysis &
Transformation

Review

HTM runtime

Figure 1: GOCC schematic diagram. Static analysis detects three legal
lock-unlock pairs in the input file example.go. The top one is a valid
replacement candidate. The middle one is filtered since it contains
I/O operations in its critical section. The bottom one is dropped due
to the infrequent use via the information provided by profiles. The
transformed code calls optiLib, which executes the critical section
via HTM. The resulting diff is given to the developer for review.

2 Challenges

Locks are widely used in the real-world Go code and a signif-
icant amount of execution time can be spent waiting to acquire
them [15,19,27,28,68,86,89] 1. It is possible to replace a lock
with a transaction that enables a critical section to be specu-
latively executed without actually holding the guarding lock.
With the support of the HTM, such replacements can result
in significant speedups. However, there are several challenges
in performing these replacements correctly and robustly, and
ensuring that they deliver high performance reliably.

First, automatically and accurately matching a lock with
its corresponding unlock operation to precisely identify
critical sections is a complex problem. Real-world programs
can use locks with nesting intra- or inter-procedurally,
which makes it significantly more involved. Additionally,
certain lock-compatible instructions (e.g., IO and privileged
instructions) will not work with HTM. A critical section
including such instructions will not benefit from HTM.

Furthermore, Go provides a keyword that enables delaying
lock release operation to all exit points of a function by
prefixing the Unlock() operation with the defer [49]
keyword2. It not only complicates matching an unlock with a
lock operation, it may unnecessarily lengthen a critical section,
which according to a synthetic benchmark we wrote shows per-
formance degradation. A scan of 21 million lines of industrial
Go code, which includes about 8000 Unlock() operations,
shows that about 76% are prefixed with the defer keyword.
This indicates that handling defer statements is important.

Second, the Go language nuances [46] (e.g., pointer vs. value
syntax, anonymous Mutex fields, lambda functions, etc.) make

1A limited study we performed in a large-scale industrial setting using
thousands of different Go services showed up to 30% execution time being
spent in lock-related code in certain Go programs; 5-10% was quite common.

2Any function can be deferred in Go.

940 2021 USENIX Annual Technical Conference USENIX Association

it non-trivial to transform lock-based code to HTM-based code.
Third, HTM has startup and commit overheads. Even in

non-concurrent code, where data-access conflicts do not
happen, HTM can fail [14], and locks may outperform HTM,
particularly on tiny critical sections [75].

Fourth, the critical section size can be hard to estimate in
general. If we make the conservative design choice and do not
replace the lock if the critical section size is unknown, we can
miss the opportunity to generate significant performance im-
provement. Thus, we need some runtime mechanism that can
handle critical sections of arbitrary sizes with low overhead.

Fifth, when HTM aborts for a genuine data-access conflict,
naively falling back to using a lock can be detrimental to
performance [42, 64]. Deciding when and how to retry HTM-
based executions or fall back to using fine-grained locks must
be handled very carefully to avoid pathologies [37, 42, 64].

Our tool, GOCC, attempts to solve the above challenges.
GOCC is an end-to-end system for improving the performance
of lock-based Go code using HTM. We devise a sophisticated
program analysis to identify lock-protected critical sections
(§ 5.2), support lock-to-HTM code transformation including
non-trivial Go features (§ 5.3), and develop an efficient HTM
library to handle issues manifested at runtime (§ 5.4).

3 Related Work

Herlihy and Moss proposed transactional Memory (TM) [53]
in 1993 as an alternative to locks. While locks proactively pre-
vent two or more threads from concurrently accessing shared
data, TM takes the opposite approach — concurrent accesses
are allowed as long as they do not conflict. A lot of work has
been done around both software and hardware implementa-
tions of transactional memory [41, 43, 71, 77, 82, 90, 92], but
only a few [61, 76, 93, 97] focused on evaluating the approach
with real-life workloads, and none have done this for Go.

Intel’s TSX extension of x86 instructions set [5] implement-
ing HTM is of specific interest here as it underlies parts of
our implementation. It is widely available in modern Intel
CPUs and offers software interfaces providing subtly different
functionality. The RTM (Restricted Transactional Memory)
interface allows programmers to execute arbitrary code as a
hardware transaction. All operations within a transaction have
atomic execution behavior — they all either appear to happen
instantaneously or the entire transaction aborts and reverts the
architectural state to before it was started. This can be trivially
used to emulate the behavior of mutual-exclusion locks. In
fact, this is precisely the kind of functionality that the HLE
(Hardware Lock Elision) interface provides. However, HLE
has been introduced mainly for backward compatibility with
architectures that are not TSX-enabled and is not only very
simplistic (e.g., with respect to contention management) but
has also been shown to perform poorly compared to RTM [1].
Consequently, our solution uses the RTM interface as the low-
level implementation mechanism to build a comprehensive

TM-based alternative for mutual-exclusion locks.
Lock elision, whether in software or hardware or a hybrid

fashion, including gaining insights into them, has been exten-
sively studied [22,29,34,36–39,44,45,57,58,63,71,71,72,74,
81,91,92,95]. Our work uses many of those techniques; for ex-
ample, the basic design of our runtime controller was inspired
by Wang et al. [91]. Additional possibilities to bring more
solutions from the literature to the design and implementation
of both our static analysis tool and runtime controller also exist.
Other attempts to use transactional memory for emulating
mutual-exclusion locks exist as well [70, 96], but they have to
cope with higher overheads and semantics-related complica-
tions due to using the STM, they target the Java language whose
synchronization lock-like primitives (i.e., monitors) are easier
to handle due to their lexical scoping and, most importantly,
their evaluation is based exclusively on synthetic benchmarks.

4 GOCC Overview

A Go Mutex is a runtime object with Lock() and Unlock()
operations on it. Two (or more) critical sections guarded by the
same Mutexwill not execute concurrently. When transforming
locks into HTM, there are two possibilities.
1. A given Mutex guarding a set of critical sections is replaced

with another object supporting operations analogous to
Lock()/Unlock() but provided by the HTM. As a result,
all critical sections previously guarded by the Mutex are
now executed under HTM’s control.

2. Lock()/Unlock() operations of the Mutex are replaced
with their HTM equivalents on a per critical section basis.
As a result, some critical sections for a given Mutex are
still guarded by the same Mutex, while the others execute
under HTM’s control.
The former is doable only if it is beneficial to transform

all Lock()/Unlock() operations using a given Mutex, and
the Mutex object is defined in the code that we are rewriting.
Assessing the benefit of transforming the Mutex object would
require inspecting every critical section it protects. A “may
alias” pointer analysis [55, 65] can answer such a question.
The “all-or-none” coarse-granularity of this approach makes
it unattractive because the imprecision of pointer analysis
overapproximates the critical sections protected by a Mutex,
disqualifying too many Mutexes from transformation.

This work adopts the latter approach, where we consider
pairs of Lock()/Unlock() operations in the code for
transformation, which provides fine-grained control over
transformation. This approach has to handle pairing a lock with
its corresponding unlock and support interoperability of HTM
(where the code is transformed) with locks (where the code is
not transformed). This kind of interoperability is well-studied
in the literature [23,32,40,41,64] and is handled by our library.

Recall, from Figure 1, that input to GOCC is the source code
for a Go package along with its execution profiles. The output

USENIX Association 2021 USENIX Annual Technical Conference 941

is a source code patch, where candidate Lock()/Unlock()
operations are replaced with calls to a custom HTM library.
GOCC consists of the following key components:
• Analyzer: performs static analysis on the input program and

collects lock-unlock pairs for transformation (§ 5.2).
• Transformer: rewrites the program by replacing
Lock()/Unlock() with FastLock()/FastUnlock(),
which elide the lock using HTM (§ 5.3).

• Adaptive runtime (optiLib): implements HTM in Go and
provides required runtime mechanisms including retry and
rollback (§ 5.4).
The source code patch choice, rather than a compiler trans-

formation, is motivated by the desire to keep the developers
in the loop. Using HTM without developers’ knowledge
can prove unwelcome because developers often demand full
visibility into their programs. Developers are becoming per-
formance and variance sensitive [56, 67, 83], and an accidental
regression can become hard to diagnose. As a side effect,
the choice of source-code patch demands us to be surgical —
injecting large, complicated HTM-handling boilerplate code
is a non-starter. Consequently, we perform Lock()/Unlock()
operations replacements with API calls to HTM logic hidden
in the optiLib open-source library and do so only in places
where benefits of HTM are likely (e.g., we minimize the
number of modified code locations using execution profiles).

4.1 GOCC Guarantees and Limitations
• GOCC will transform properly synchronized code (i.e.,

where every lock operation will have a corresponding
unlock operation) into the equivalent code without changing
the code’s behavior. Code not meeting this criterion will
be either not transformed, or transformed and its runtime
behavior will be unchanged.

• GOCC considers only those lock-unlock pairs that seem
to operate on the same lock within the same function —
inter-procedural Lock()/Unlock() operations are disre-
garded. Note, however, that in a critical section protected by
GOCC transformed lock can make arbitrary function calls.
The requirement to have both Lock() and its matching
Unlock() operation be present in the same procedure scope
is only our implementation choice and pragmatic in nature.
Over 70% of the locks we inspected met this criterion.

• GOCC makes no effort to identify critical sections or code
reachability in the presence of reflection [10].

• GOCC, as implemented, does not statically detect HTM
conflicts or capacity limitations (see § 5.2 for the details).

5 GOCC Design and Implementation

Before diving into the details of GOCCs design and
implementation, we define some common terminology.

5.1 Terminology
Go’s sync package provides two kinds of shared memory
objects: Mutex and RWMutex. GOCC handles them both, but in
the following sections, without the loss of generality, we will
only use the term Mutex for simplicity. From an HTM transfor-
mation viewpoint, an RWMutex is no different from a Mutex,
except RWMutex offers additional APIs for read-only accesses.

A critical section CS is all code regions protected by
a pair of lock and unlock operations on the same mutex
object m — the notation for calling lock/unlock operations
on m is m.Lock()/m.Unlock() where m is referred to as a
receiver. Lock-point, abbreviated with letter L (Unlock-point
abbreviated with letter U), is a static location in the code
where the Lock() (Unlock()) function is invoked on a Mutex.
LU-points is a set of L and U points. LU-pair is a candidate
pair of one lock-point paired with an unlock-point. In the
runtime context, fastpath/HTM-path means the use of HTM,
and slowpath/fallback-path means the use of the original lock.

We utilize the Abstract Syntax Tree (AST), program
Control Flow Graph [85] (CFG), and Static Single Assignment
(SSA) [35] form of program representation prevalent in the
compiler literature. In a CFG, nodes are basic blocks [85] of
straight-line code, and edges are control flow relationships
among them. GOCC first transforms the source code to the AST
form (which is also used for code transformation as described
in § 5.3) and then to the SSA form for CFG construction.

5.2 Analyzer
The goal of the analyzer is to find as many LU-pairs as
possible. The LU-pairs that protect HTM-incompatible critical
sections (e.g., those including IO operations) must be pruned.
This filtering serves two purposes: it reduces the number
of code changes and non-beneficial HTM transformations.
Complicated lock usage patterns, several Go language quirks,
and pointer imprecision complicate the static analysis. A
comprehensive call-graph analysis is vital because critical
sections often contain function calls.

Conflicts: A sophisticated static analysis may detect
whether transactions conflict. Answering this question,
however, is unlikely to be valuable because developers
typically do not use a lock if a conflict is impossible. Assuming
conflicts happen, there is no easy way to statically determine
whether transactions do not “typically” conflict. We do not try
to solve this problem and leave conflict resolution to optiLib.

Capacity: Although one can perform static analysis to
estimate the memory footprint of a critical section, it may not
be possible if the bounds of a loop are unknown. Also, without
knowing the target architecture’s HTM capacity, it would be
premature to filter out candidate critical sections this way. We
leave the capacity-related decisions also to optiLib.

In the rest of this section, we, first, define the scope of
our transformation (§ 5.2.2); then, describe the process of

942 2021 USENIX Annual Technical Conference USENIX Association

1
2 m := &sync.Mutex{}
3 m.Lock()
4 m.Unlock()

Listing 1: Original lock-based
code.

1 l := OptiLock{}
2 m := &sync.Mutex{}
3 l.FastLock(m)
4 l.FastUnock(m)

Listing 2: Transformed HTM
code.

matching a lock with an unlock operation within a code region
assuming no lock nesting and no function calls in a CS; extend
our analysis to include nested locks (§ 5.2.3); expand the
analysis scope to CSs that may contain function calls (§ 5.2.4);
detail special case of Go’s defer statement (§ 5.2.5); and
finally discuss profile-based filtering (§ 5.2.6).

5.2.1 Scope of Transformation

To simplify the analysis, if a Lock()/Unlock() operation is
executed in the middle of a basic block, we break such basic
blocks in the CFG so that each lock-point begins a new basic
block and each unlock-point ends a basic block. A single-entry
single-exit (SESE) region [60] (simply region) of a CFG is our
smallest granularity of lock transformation. A region is a sub-
graph of a CFG. Control reaching any basic block in a region is
guaranteed to have already executed a designated entry basic
block; control leaving from any basic block in the region is guar-
anteed to eventually pass through a designated exit basic block.

A function is the largest granularity of our lock transforma-
tion; a function always forms a region because all exits from
a function are considered to go through a dummy basic block.
This choice is pragmatic in nature since LU-pairs spanning
multiple functions are uncommon.

Regions can be nested within one another. A Program
Structure Tree (PST) organizes regions into a hierarchical
tree [60]. We visit regions inside out from most-nested to
least-nested. Appendix B in the extended version of this
paper [94] describes the region identification and visiting
strategies, which are not central to this paper.

5.2.2 Matching LU-pair in the Absence of Nested Locks

This subsection discusses analyzing a candidate region R.
LU-points in R may be operating on different locks, which

should be pruned. Some lock (unlock) operations may escape
R, without a corresponding unlock (lock) operation in R, which
should also be pruned. Below, we formalize these aspects.

Definition 5.1 (Points-to set M (L) of a Lock point L). Every
lock-point (L) operates on some receiver mutex pointer p.3
Such a mutex pointer may point to one or more mutex objects
allocated in the program. The set of all possible Mutex
objects that pmay point to in the program is the Points-to Set
of L, denoted by M (L).

3At the source level p can be either a pointer or an actual object value, but
at the SSA level it is always a pointer.

a.Lock()

c.Unlock()b.Unlock()

{m,n}{p}

{l,m}

Exposed

Figure 2: a.Lock() is
Downward Exposed.

c.Unlock()

b.Lock()a.Lock()

{m}

{m,n} {m,k}

Figure 3: c.Unlock() is not
Upward Exposed.

b.Unlock()

a.Lock()

{m, n}

{m, p}
Dom

PDom

Critical
Section Re

gi
on

R

Figure 4: Region dominated by lock and post-dominated by
unlock.

Similarly, the Points-to set of an Unlock point U is M (U).
We employ Anderson’s flow-insensitive may-alias analy-
sis [25] to obtain M (L) and M (U) on the whole program.

Definition 5.2 (Downward Exposed Lock-point (DELock)).
A lock-point, L, with points-to set M (L), is downward exposed
in region R, if there exists at least one path from L to R’s exit
without any unlock-point on any mutex in M (L).

Definition 5.3 (Upward Exposed Unlock-point (UEUnlock)).
An unlock-point, U, with points-to set M (U), is upward
exposed in region R, if there exists at least one path from R’s
entry to U without a lock-point on any mutex in M (U).

DELock identifies lock-points that definitely do not have
any corresponding unlock-points in some execution paths in R;
and UEUnlock identifies unlock-points that definitely do not
have corresponding lock-points in some execution paths in R.

Figure 2 exemplifies a downward exposed lock-point.
Mutex pointer a’s points-to set {l,m}, has an empty intersec-
tion with b’s points to set {p}; although it has a non-empty
intersection with c’s points-to set {m,n}. Figure 3 exemplifies
an unlock-point that is not upward exposed. Mutex pointer
c’s points-to set {m}, has non-empty intersection with a’s
points-to set {m,n} and b’s points-to set {m,k}.

We eliminate all DELock(R) and UEUnlock(R) from the
transformation in R. The remaining lock-points in R are the
complement of DELock(R), which is denoted by DELock(R).
Similarly, the remaining unlock-points in R are the comple-
ment of UEUnlock(R), which is denoted by UEUnlock(R).

Definition 5.4 (Feasible-HTM-Pair). Let L 2 DELock(R).
Let U 2UEUnock(R). L and U form a feasible HTM pair if
all of the following conditions are true,

USENIX Association 2021 USENIX Annual Technical Conference 943

(1) M (L)\M (U) 6=f,
(2)

�
L DOM U

�V�
U PDOM L

�
,

(3) The critical section C ✓ R guarded by L and U contains
no LU-point X such that M (X)\

�
M (L)[M (U)

�
6=f, and

(4) C contains no HTM-unfriendly instructions.

Condition (1) filters out those LU-points that are guaranteed
to be operating on different Mutexes.

Condition (2) filters out infeasible control flows where
unlock happens before lock and vice-versa. DOM and
PDOM respectively represent dominator [85] and post-
dominator [85] relationships in a CFG. Figure 4 shows an
example, where all paths from lock-point a.Lock() are
post-dominated by unlock-point b.Unlock(), whose all
incoming paths are dominated by a.Lock(). Additionally,
the set-intersection of the points-to set of mutex pointers
a={m,p} and b={m,n} is non-empty. Any Feasible-HTM-
Pair on L and U , forms an SESE-region by itself, where the
entry basic block has L as its first instruction and the exit basic
block has U as its last instruction. Condition (2) intuitively
finds correct candidate LU-pairs in the absence of nested
locks because if a lock operation L is performed on every
path reaching any code in C and an unlock operation U is
performed on every path exiting C, then LU must be operating
on the same Mutex. Appendix A in the extended version of this
paper [94] justifies our choice of DOM/PDOM relationships.

Condition (3) ensures that if we match an L with a U , there
does not exist another lock-point or unlock-point in the same
region that may operate on a Mutex in the same points-to set as
that of L or U . The next subsection elaborates on lock nesting.

Condition (4) is an obvious requirement to ensure HTM does
not abort. A region is unsafe if it contains any IO instructions.

Since we use “may alias” to match a lock-point with unlock-
point, it is possible (but less likely) for our transformation
to pair a lock with an unlock that may be operating on two
different mutex objects at runtime. However, at runtime, we
can obtain and memorize the address of the mutex object used
at the lock-point, and compare it against the mutex object
offered to the runtime at the unlock-point. In case of an address
mismatch of the mutex objects used in the same LU-pair, we
can abort the transaction and revert to a safe state and fall
back to using the locks. A mismatch is impossible without
nested locks because of the dominance and post-dominance
relationship between the lock and unlock in an LU-pair.

5.2.3 Lock Nesting

Go supports nested locks, but reentrant [13] locks are not
allowed. Condition (3) in Definition 5.4 allows nested locks
but demands that they operate on disjoint Mutex objects.

HTM via Intel TSX allows nesting: if a nested transaction
succeeds, hardware does not commit it until the outermost
transaction commits. If a nested transaction fails, the control
jumps to the starting code address of the nested transaction.

1 a.Lock() //outer region start
2
3
4 b.Lock() // inner region start
5 b.Unlock() // inner region end
6
7 a.Unlock() //outer region end

Listing 3: Nested Locks.

1 a.Lock()
2
3 l := OptiLock{}
4 l.FastLock(b)
5 l.FastUnlock(b)
6
7 a.Unlock()

Listing 4: HTMized.

1 a.Lock() //outer region start
2
3
4 b.Lock() // inner region start
5 a.Unlock() // inner region end
6
7 b.Unlock() //outer region end

Listing 5: Hand-over-hand lock.

1 a.Lock()
2
3 l := OptiLock{}
4 l.FastLock(b)
5 l.FastUnlock(a)
6
7 b.Unlock()

Listing 6: HTMized.

This facility allows us to safely transform locks into HTM
even when they are nested.

Condition (3) in Definition 5.4 disqualifies a candidate
LU-pair from the transformation in region R if there exists any
other lock or unlock point whose lock/unlock operation may
be operating on the same mutex as those in the LU-pair.

As an example, in Listing 3, assume the mutex pointers
a and b point to the same points-to set. When inspecting
the “inner region”, we find only one LU-pair, which obeys
all Feasible-HTM-Pair conditions in Definition 5.4. Con-
sequently, the lock usage on b in the inner region can be
transformed to HTM. When inspecting the “outer region”,
however, we see conflicting LU-points, and hence the locking
operations on a will not be transformed. The resulting
transformed code is shown in Listing 4, which is correct.

This approach complicates hand-over-hand locking [33,62],
sometimes used in the concurrent linked-list traversal, shown
in Listing 5. As before, assume all four LU-points have a non-
empty intersection of their points-to sets. When inspecting the
inner region, the LU-pair b.Lock() and a.Unlock() passes
all tests in Definition 5.4. Hence, they will be, incorrectly,
paired and transformed to use HTM, as shown in Listing 6.
This transformation violates the programmer’s intention. Sub-
sequently, when visiting the outer region, condition (3) is vio-
lated, and hence the outer LU-pair will not be transformed. One
could have discarded the transformation of the inner region
when the conflict is visible in the enclosing region. However,
we cannot distinguish this incorrect pairing from the correct
pairing in the previous case. Our solution is to always apply the
transformations on the candidates found in inner regions, and
handle mismatches at runtime via HTM aborts iff executing
on the fastpath. As mentioned at the end of § 5.2.2, a mismatch
is easy to recognize at runtime by, first, making FastLock()
store the address of the Mutex used at the lock-point in a field
in OptiLock and, second, checking whether the Mutex passed
to FastUnlock() is the one present in OptiLock. The transac-
tional abort is needed (and possible) only on the fastpath. Ap-
pendix C in the extended version of this paper [94] details the
correctness of transforming nested locks into HTM via GOCC.

944 2021 USENIX Annual Technical Conference USENIX Association

5.2.4 Critical Sections with Function Calls

When the critical section protected by a candidate LU-pair
contains function calls, we need to extend the analysis beyond
the current function. Conditions (1) and (2) in Definition 5.4
are local to R. Conditions (3) and (4) require inter-procedural
analysis.

We need to ensure that the transitive-closure of all code
regions protected by a candidate LU-pair, including the
blocks reachable via function calls, neither contains any
HTM-unfriendly instructions nor contains any LU-points
whose points-to set may overlap with the points-to sets of L
or U . Otherwise, we discard the candidate LU-pair.

To accomplish this, we first build a static call graph using
rapid type analysis [7, 26]. Next, we precompute summary
information for each function on its own without its transitive
closure of function calls; the summary contains (a) the fit of the
function for HTM based-execution (i.e., no HTM-unfriendly
instructions), and (b) the union of all points-to sets of all
LU-points in the function, denoted by P .

For a candidate LU-pair meeting all the conditions in Defini-
tion 5.4 within the region R, we proceed to do inter-procedural
analysis. Let F⇤ be the transitive closure of all the function
calls invoked inside the critical section C✓R protected by a
candidate LU-pair. LU-pair is discarded if (a) 9F 2F⇤s.t. F’s
summary contains HTM-unfriendly instructions or (b)
9F 2 F⇤s.t. P [(M (L)[M (U)

�
6= f. The former is simply

the condition (4) expanded to all functions, and the latter is
condition (4) expanded to all functions. We note that nested
locks discussed in § 5.2.3 can be in different functions.

5.2.5 The defer Statement

The defer [49] statement in Go, introduced in § 2, needs
special attention. Go defers the execution of functions prefixed
with the defer keyword to the calling function’s return point.
The presence ofdefer Unlock() complicates our CFG-based
dominance/post-dominance analysis. Deferred unlocks extend
the critical sections till function exit points. Listing 7 shows a
legal Go code, where the defer m.Unlock() appears even be-
fore the call to m.Lock(). Condition (2) in Feasible-HTM-Pair
will treat this pair as an invalid candidate for transformation
because the lock-point does not dominate the unlock-point.

We address this case by interpreting defer m.Unlock() in
a CFG by (a) introducing a synthetic m.Unlock() statement
at the end of each basic block that returns control from the
function, and (b) discarding the presence of m.Unlock() in its
original position during the analysis. This allows us to reuse
the previously described dominance relationship. During
transformation, however, GOCC simply replaces a defer
Unlock() with a defer FastUnlock() in its original place,
as shown in Listing 8.

Multiple defer calls are executed in a last-in first-out
(LIFO) order of encountering the defer statement at runtime.

1 func DeferExample() {
2
3 m := &sync.Mutex{}
4 defer m.Unlock()
5 m.Lock()
6 // critical section
7 }

Listing 7: defer Unlock.

1 func DeferExample() {
2 l := OptiLock{}
3 m := &sync.Mutex{}
4 defer l.FastUnlock(m)
5 l.FastLock(m)
6 // inside HTM
7 }

Listing 8: HTMized.

This complicates the dominance and post dominance rela-
tionship; for simplicity, we discard any function that contains
multiple defer Unlock() statements. We found none in the
packages used in our evaluation.

5.2.6 Profiles to Filter Hot Critical Sections

Profiling is a built-in feature in Go, which takes callstack
samples via timer [48] or hardware performance counter [30]
interrupts. One can take CPU profiles of a go program either
at launch time by simply passing a -cpuprofile flag or
from an already running program, for a specified duration, by
accessing an exposed profiling port.

Go profiles are in the pprof format.
The pprof Go package [48] allows us to programmatically

navigate the callstack samples presented as weighted call
graphs, where the nodes represent functions and edges
represent caller-callee relationships. The functions are
annotated with their inclusive and exclusive execution times.

When profiles are available, we use them to filter the
regions where negligible execution time is spent, even before
applying the static analysis. In fact, this is the first filtering
step we perform before making the aforementioned LU-pair
identification. We treat any critical section (including the entry
and exit) where the aggregated execution time is less than 1%
of the total execution time as insignificant.

5.3 Transformer
Since our end product is a code patch, we perform the
transformation on the AST form of the program. Go AST can
be serialized into source code via Go format [8] package. To
this end, the transformer maps the candidate set of LU-pair
operations found during the SSA-based analysis phase
(described in § 5.2) to AST nodes [6]. It then replaces the
LU-pair operations with calls to FastLock()/FastUnlock()
in optiLib. It also passes the original Mutex object as a
pointer to the calls to FastLock()/FastUnlock() since the
underlying lock object is necessary for lock elision (fastpath)
as well as for slowpath. Figure 5 shows an example AST
transformation. The transformation itself is mechanical but
challenging. In the following sections, we discuss several Go
features that pose special challenges in transforming the AST.

Go pointer vs. value: Go syntax does not distinguish
accessing a field of a composite type (e.g., struct) via
an object-pointer or an object-value; both use the same

USENIX Association 2021 USENIX Annual Technical Conference 945

Ident

SelectorExpr

CallExpr

X

Name
 Ident

Sel

Lock

Name

Fun
CallExpr

Fun

SelectorExpr

X

m

 Ident

Name

libGoHTM

 Ident

Sel

Name

FastLock

 Expr

(len = 1)

Args

Pos 0

 Ident
Name

m

Figure 5: Example of AST transformation from m.Lock() to
optiLib.FastLock(m). Some AST nodes are omitted for brevity.

1
2 // pointer form
3 m := &sync.Mutex{}
4 m.Lock()
5 m.Unlock()
6
7 // value form
8 n := sync.Mutex{}
9 n.Lock()

10 n.Unlock()

Listing 9: Both Mutex pointer
m and Mutex value n invoke
Lock/Unlock using the same
dot dereferencing operator.

1 l := Optilock{}
2 // pointer form
3 m := &sync.Mutex{}
4 l.FastLock(m)
5 l.FastUnlock(m)
6
7 // value form
8 n := sync.Mutex{}
9 l.FastLock(&n)

10 l.FastUnlock(&n)

Listing 10: GOCC trans-
formation passes m as-is to
FastLock()/FastUnlock() but
&n to FastLock()/FastUnlock().

AST dot operator as exemplified in Listing 9. However,
FastLock() and FastUnlock() must receive a pointer to the
Mutex object to perform the elision correctly. Hence, if the
LU-pair uses a Mutex value, its address needs to be passed
to FastLock()/FastUnlock(), and if the LU-pair uses a
Mutex pointer, it should be passed as is.

We address this issue in the transformer by querying the type
information [9] for each receiver object subject to transforma-
tion. If the receiver identifier is aMutexvalue type,we insert the
additional address-of operator before the Mutex identifier
in the AST and pass it to FastLock()/FastUnlock(). If the
receiver identifier is a pointer to a Mutex type, we pass it as is.

Go anonymous fields: Go allows programmers to define
a struct that has fields without names. For instance, Listing 11
shows a struct AStruct that has an anonymous *sync.Mutex
field. Operations on this anonymous mutex are performed
by simply using the name of the enclosing struct variable
as shown on Line 8. Hence, our transformation needs to be
cognizant about whether the original LU-pair operations are
performed on an anonymous mutex.

By inspecting the type information [9] of the access
path [66] used to invoke the lock/unlock operation in the AST,
we determine whether or not the operation is performed on
an anonymous mutex field. Upon determining the operations
to be on an anonymous mutex, we pass the address of the
anonymous Mutex to optiLib by simply suffixing the
operation access path with Mutex as shown in Listing 12,
Line 8 (where access path simply consists of variable a).
This transformation composes with the previously described
pointer vs. value operations.

Anonymous goroutines: Go supports anonymous gor-
outines [2], which are nested inside other functions as

1 type AStruct struct {
2 x int //not anonymous
3 *sync.Mutex //anonymous
4 }
5 func main{} {
6
7 a := AStruct{}
8 a.Lock()
9 a.Unlock()

10 }

Listing 11: Locking on an
unnamed field of a struct.

1 type AStruct struct {
2 x int // not anonymous
3 *sync.Mutex //anonymous
4 }
5 func main{} {
6 l := OptiLock{}
7 a := AStruct{}
8 l.FastLock(a.Mutex)
9 l.FastUnlock(a.Mutex)

10 }

Listing 12: Unnamed mutex
transformed to HTM.

1 m := &sync.Mutex{}
2 for i:=0;i<10;i++ {
3 go func() {
4
5 m.Lock()
6 // CS
7 m.Unlock()
8 }()
9 }

10 //wait all

Listing 13: Anonymous gor-
outines create concurrent units
of execution on anonymous
functions.

1 m := &sync.Mutex{}
2 for i:=0;i<10;i++ {
3 go func() {
4 l := OptiLock{}
5 l.FastLock(m)
6 // CS
7 l.FastUnlock(m))
8 }()
9 }

10 //wait all

Listing 14: The OptiLock
needed for the transformation
should be placed in the
innermost function scope.

shown in Listing 13; these goroutines run concurrently.
Our transformation introduces a new OptiLock variable in
transformed functions. OptiLock’s declaration should be in
the scope that encloses both Lock and Unlock operations,
but it should not be shared by other concurrent executions
because it maintains goroutine-specific state. Hence, we make
OptiLock a variable in the stack of each goroutine. We add
the declaration to the innermost function body as shown on
line 4 in Listing 14. A bottom-up AST walk from LU-pair
to be transformed allows us to easily detect the innermost
enclosing anonymous function scope.

5.4 Adaptive HTM Runtime: optiLib
optiLib implements all the intelligent runtime control needed
to perform HTM in lieu of locks. It is in charge of starting and
committing transactions in critical sections, as well as falling
back to the lock when necessary. It is responsible for inter-
operating with locking operations on the same mutex that may
not be transformed to use HTM. In the event of aborts, it is
responsible for determining the cause of the abort and deciding
whether and how many times to retry. If, accidentally, the code
rewriting matches lock-point with a programmer-unintended
unlock-point, optiLib is responsible for detecting and recov-
ering from the mistake. Finally, it is responsible for understand-
ing and dynamically adjusting to changing contention.

We implement optiLib using TSX [5] for Intel platforms.
optiLib is carefully implemented to ensure correctness under
all circumstances. Equally important, it is implemented with
the utmost attention to performance. Every instruction and
its placement are carefully planned to minimize any overhead
of its own. optiLib uses Intel RTM; it does not use the
Hardware Lock Elision (HLE) [1] because it does not provide

946 2021 USENIX Annual Technical Conference USENIX Association

the fine-grained control we need.
optiLib introduces a data structure: OptiLock, which has

two fields: a boolean slowPath and a *sync.Mutex lkMutex.
slowPath is set to true if the lock is not elided at runtime.
lkMutex always holds the address of the fine-grained lock be-
ing elided. OptiLock supports FastLock()/FastUnlock()
operations, both need a *sync.Mutex argument, which is the
mutex receiver object being elided at the original call sites
of Lock()/Unlock(). Try locks and timed locks [31, 78] are
absent in Go; it is trivial to support them in optiLib.

The FastLock() implementation uses sophisticated
mechanisms described previously by others [23, 32, 64]
to interoperate slow and fast paths concurrently. Stated
succinctly, the FastLock(), waits for the fine-grained lock
to be available before starting the hardware transaction; on
starting a transaction, it first checks if the fine-grained lock
is already held and unconditionally aborts if it is already held;
if it is not held, the act of checking adds the lock word to the
transaction read-set, and hence, if a concurrent execution on
the slowpath acquires the same lock during the transaction,
the fastpath immediately aborts ensuring mutual exclusion.
Any two threads in the fastpath can run concurrently as long
as they do not conflict in their memory accesses.

Reading the internals of the original sync.Mutex object is
straightforward and has no performance penalty; FastLock()
simply de-references the first word of the Mutex pointer
passed into the function, which contains the lock status.

The FastUnlock(), based on slowPath value, either com-
mits the transaction or invokes the unlock on the mutex object.
It also safeguards against accidental incorrect code patches by
ensuring that the mutex object passed into FastLock() and
stored in the lkMutex field of OptiLock matches the mutex
object presented to FastUnlock(). In case of a mismatch,
FastUnlock() restores safety by aborting the transaction (iff
on fastpath), and subsequently enforces the slowpath.

5.4.1 Dynamic adjustment via perceptron

It would not be fruitful to attempt HTM if doing so has already
proved to be unsuccessful for whatever reason. GOCC learns
and adapts to HTM behavior and decides whether to use HTM
for the already transformed LU-points, the fallback being
the original lock. For this purpose, GOCC uses a featherlight,
hardware-inspired “hashed perceptron” [84].

The hashed perceptron predictor hashes feature weights
into one or more tables. Then at the prediction time, it uses
indexes to access feature weights from the tables and adds up
all the relevant weights. If the sum exceeds a threshold, the
prediction will be regarded as positive (e.g., "HTM should
be taken"). Otherwise, the result will be viewed as negative
(e.g., "HTM should not be used"). The weights will be updated
based on the correctness of the predictions.

If operations on a given Mutex have been HTM-
friendly/unfriendly, we want to utilize this information.

Similarly, if a code location has been HTM-friendly/unfriendly
irrespective of the Mutex used, we want to use this information
as well. Hence, the two input features for the perceptron are
the Mutex and the calling context [24, 50] of lock/unlock invo-
cation. The address of the Mutex serves as the Mutex feature,
and the address of OptiLock serves as a unique identifier for
the calling context feature. Updating the same perceptron
weight for the Mutex feature by different goroutines would
create a conflict (and potentially a performance collapse).
Hence, we instead XOR the Mutex address with the address
of the OptiLock to produce a conflict-free feature input.

Our perceptron implementation creates two 4K-entry arrays
as the global weight tables (GWT). The weights take an integer
number ranging from -16 to 15. At runtime, FastLock()
and FastUnlock() functions index into GWT by taking the
lower-12 bits of the two features. Perceptron operations are
done outside the transaction. The updates and reads from GWT
are lock-free but racy — perfection is not required here, but
high-performance is necessary. Experiment results from § 6.2
show the effectiveness of perceptron learning in protecting
against poor HTM performance.

Perceptron weight update: Perceptron weight updates
happen in the FastUnlock() function after successfully
finishing the critical section, whether on fast and slow path.

If the perceptron decides that the lock should be used,
there will be no update to the weights as the lock will always
succeed. When the perceptron indicates to use the HTM
and the execution finishes on the fastpath, the corresponding
weight in the cell will be increased (because the perceptron
makes a correct decision, it should be encouraged to use the
HTM more frequently). On the other hand, if perceptron
determines to use HTM, but HTM fails and falls back to
slowpath, the weights will be decreased (because HTM does
not work for the current call, perceptrons should be penalized
for incorrect recommendation to improve future predictions).

Weight decay: We keep a counter, in each cell in GWT,
to record the number of lock calls that go to the slowpath
directly as a result of perceptron decision. If a lock has been
used consecutively for a certain number of times and exceeds
the threshold, we reset the weight of the perceptron cell and
subsequently try HTM. Without this reset, perceptron would
get stuck on the slowpath, preventing the benefits of the
HTM execution in the future. We set this threshold to 1000
continuous decisions. Appendix D in the extended version of
this paper [94] summarizes our FastLock()/FastUnlock()
implementations including the perceptron logic.

5.4.2 Alleviating HTM overhead

HTM brings overhead for very short critical sections as
described in § 2 above, even under single-core execution.
optiLib avoids using HTM if it recognizes a single OS-thread
in a Go process. optiLib employs runtime.GOMAXPROCS(0)
API for this purpose.

USENIX Association 2021 USENIX Annual Technical Conference 947

repo stars
contrib
utors

com
mits LoC

Lock
points

Unlock
points violates

dominace

Candid
ate
pairs

unfit for HTM
Nested alias
locks

Transformed
Pairs w/o profiles

Transformed
Pairs w/ profiles PairedProf(defer)

total (defer) intra/interproc intra/interproc total (defer) total (defer)

tally 450* 27 95 2.4k 54 56 (28) 2 52 2/29 0/0 21 (14) 7 (7)
zap 4.5k* 7 163 3.3k 8 8 (4) 0 8 3/0 0/0 5 (1) 6 (0)
go-cache 11.6k* 71 322 18k 96 230 (6) 68 28 0/2 0/0 26 (4) 10 (2)
fastcache 59k* 40 673 33k 24 24 (2) 2 22 2/2 0/0 18 (0) 7 (4)
set 967* 8 48 2.4k 16 16 (10) 0 16 0/2 0/0 14 (8) 8 (2)

Table 1: Go package characteristics and their behavior using GOCC

6 GOCC Evaluation

We evaluate GOCC on an 8-core (⇥2-way SMT [87]) Intel
Coffee Lake CPU with a total 32GB memory, running Linux
5.4.0. The CPU has 32KB L1I and L1D cache, 256KB L2
cache, and 16MB L3 cache. The Go version is 1.15.2.

Table 1 shows the list of applications and libraries we employ.
In the absence of standard benchmarking for Go, we selected
packages that are popular open-source Go projects (column
2 in Table 1), focus on high performance, utilize lock-based
Go concurrency, and provide thread-safe APIs. In particular,
Zap and Tally are foundational logging and metrics collection
packages used in production go programs by many organiza-
tions. Additionally, since we evaluate the projects using their
own benchmark suites (more on this below), we only selected
projects that feature concurrent benchmarks or whose bench-
marks could be straightforwardly converted to be concurrent.

From a static analysis viewpoint, we see that all applications
contain several locks. Defer unlocks are common (column 7).
The “violates dominance” column shows how many LU-points
were discarded since they did not meet the dominance relation-
ship. The number is typically low except for go-cache, which
has several functions with the repeating pattern of unlocks
that do not post-dominate the candidate lock. The “candidate
pairs” column shows how many LU-points remain for further
analysis. Each column to the right progressively shows the
reasons for which a candidate LU-pair was rejected. Rejection
due to nested aliased locks is not found in these packages. The
second-to-last column shows how many LU-pairs were finally
rewritten to use OptiLock, including how many of them con-
tain defer Unlock(). The last column shows the numbers
after we retain only those locks where the functions contain at
least 1% of execution time in execution profiles. Overall, GOCC
transforms several LU-pairs in each application. Using profiles
significantly reduces the number of transformed LU-pairs.

We run all the benchmarks within each repository five times
and report the median. We believe the benchmarks accompa-
nying the code best represent its desired characteristics. As
some benchmarks are written for a single thread setting, we
rewrite them to introduce concurrency to utilize HTM-enabled
parallelism fully. We adopt the standard testing package from
Go [16], which runs each benchmark for a certain amount of
time and reports the throughput as nanoseconds per operation.
We wrap the benchmark codes with RunParallel [4] helper

function to get parallel performance if it was not already done
so. Using more CPU cores, ideally, increases throughput (i.e.,
reduces average nanoseconds per operation). Then we compare
the throughput from locks vs. HTM — a positive percentage
means GOCC’s rewrite did better, and a negative percentage
means the baseline did better. We vary the number of CPU
cores available for benchmarks from 1 to 8. Unlike HPC codes
that run on all cores on a server,Go services often use 2-4 cores.

6.1 Results on Popular Go Programs
We categorize the benchmarks in each package into two
groups:
1. Concurrency non-sensitive benchmarks either have no

locks or do not spend much time in critical sections, or our
transformation does not result in any performance differ-
ence. For these benchmarks, we only show the aggregate
(geomean) results unless noted otherwise. They appear as
“non sensitive” in our charts, and the number in the paren-
thesis indicates how many benchmarks are in this group.

2. Concurrency sensitive benchmarks exercise modified
locks non-trivially. We might have impacted them posi-
tively or negatively. For these, we present data from each
benchmark and also present an aggregate result (“sensitive”
in our charts).

The “all” part of our charts is the geomean taken over all
benchmarks. Sometimes this number looks small because of
a large number of non-sensitive benchmarks.

In what follows, we provide details of performance
evaluation on the aforementioned Go packages. The total
number of benchmarks is large; hence, we dive deep only into
benchmarks with surprisingly good speedups.

Tally [88] is a fast, buffered stats collection library and Fig-
ure 6 shows its results. For the HistogramExisiting bench-
mark, GOCC achieves more than 660% speedup on 8 cores
reducing the original time per operation from 65 ns/ops down
to around 8.47 ns/ops at 8 cores. Moreover, the HTM delivers
scalable performance. This benchmark uses a Mutex lock on a
read-only Exists operation, and hence, is a natural candidate
to demonstrate speedup as HTM eliminates the unnecessary se-
rialization. Conversely, the baseline has a scalability collapse,
where the time per operation increases from 20.4 ns/ops to 65
ns/ops for 1 to 8 cores. ScopeReporting1 holds three indepen-
dent RWMutexes at different points in time and accesses read-

948 2021 USENIX Annual Technical Conference USENIX Association

-1
3.
75

-5
.0
0

-1
0.
48

-9
.8
1

-2
.7
8

-3
.6
9

21
7.
72

12
6.
00

10
4.
00

14
4.
68

-1
.1
2

10
.7
4

42
0.
92

22
8.
40

22
9.
41 28
3.
39

-0
.6
2

17
.6
5

66
0.
71

62
2.
00

-9
.9
1

26
7.
13

1.
00 18
.6
8

-100.00

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Histogram
Existing

Scope
Reporting

/size1

Scope
Reporting

/size10

sensitive (3) non
sensitive (21)

GeoMean

Im
pr

ov
em

en
t i

n
%

1 core
2 cores
4 cores
8 cores

Figure 6: Results on Tally with different core numbers.

0 0 0.
38

0 2.
72 0 2.
26

18
9.
92

99
.5
4

12
6.
67 20
7.
56

13
.4

15
2

30
.3

45
2.
8

20
5.
96

25
2 32

4.
78

5.
88

29
9

33
.3
5

74
1.
89

48
4.
43

61
2.
46

58
5.
09

5.
28

60
0

46
.3
6

0
100
200
300
400
500
600
700
800

Rmap
Get

RIMap
GetStruct

RIMap
GetString

Rget
Concurrent

non
sensitive

(19)

sensitive
(4)

GeoMean

Im
pr

ov
em

en
t i

n
%

1 core
2 cores
4 cores
8 cores

Figure 7: Results on go-cache with different core numbers. (benchmark
names reflect abbreviated names of go-cache’s benchmark functions).

-3
.0
0

-6
.0
0

-2
.9
0

-4
.0
0

-3
.9
8

-1
0.
62

18
8.
42

10
8.
89

31
0.
06

11
6.
96

-1
0.
97

41
6.
08

32
2.
35 46

4.
46

22
3.
91

-1
0.
82

57
8.
30

-5
.0
0

10
24

.8
0

18
4.
25

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

Clear Exists Flatten Len GeoMean

Im
pr

ov
em

en
t i

n
%

1 core
2 cores
4 cores
8 cores

Figure 8: Results on concurrent set with different core numbers.

2.
41

35
.6
0

0.
83

1.
17 3.
02

9.
69

31
.6
3

-0
.4
1

0.
22

9.
56

2.
64

1.
14 1.
49

10
.7
5

3.
93

3.
40

3.
13

-1
.6
8

29
.6
1

7.
97

-5.00
0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00

CacheGet CacheHas CacheSet
 (non-sensitive)

CacheSetGet GeoMean

Im
pr

ov
em

en
t i

n
%

1 core
2 cores
4 cores
8 cores

Figure 9: Results on fastcache with different core numbers.

only data. However, since the RWMutex also involves a counter
increment and a decrement, its overhead as a result of cache
invalidation does not scale well. Thus, even eliding RWMutex
proves highly beneficial. The speedup forScopeReporting10
is lower than that for ScopeReporting1 because it performs
10x more work inside the critical section. Overall, in the sen-
sitive group, we see a 10% performance drop with a single
CPU but 145%, 283%, and 267% improvements with 2, 4, and
8 CPUs, respectively. In the non-sensitive group, the overall
performance drop is within the margin of error. Among all the
27 benchmarks of tally, we see up to 18.7% speedup at 8-CPUs.

go-cache [12] is an in-memory key-value store. It contains
benchmarks that exercise repeatedly accessing the same item
in a small map. The benchmarks contain both non-cached
accesses, similar to how go programmers often use a map,
and cached accesses provided by the go-cache layer to
demonstrate the effectiveness of the library. All benchmarks
employ RWMutexs for concurrent map read access. Unlike the
rest of the use cases, the benchmark files themselves contain
locks, which GOCC transforms into using HTM.

Figure 7 shows our empirical results. GOCC speeds up four
benchmarks in go-cache that were directly accessing the map
without the library-provided cache. In each case, we can see
more than 100% speedup; the biggest speedup is 742%. The
speedups come from eliminating contended atomic operations
involved in entering and exiting from a reader lock. The per-
formance scales well with increased parallelism because while
the lock-based approach incurs more and more contention, the
HTM approach remains conflict-free throughout. The other
benchmarks, the majority of which employ the go-cache,

are mildly improved, but more importantly, they were not
degraded as a result of transformation via GOCC.

go-datastructures [21] is a collection of performant,
thread-safe data structures. We apply GOCC on the set
subdirectory, which contains concurrency benchmarks. The
results are shown in Figure 8. The Len benchmark computes
the length of the set, and it is sped up by⇠1000% in the 8 cores
setting. Len has a short critical section that has a higher entry
and exit cost due to atomic operations when using aRWMutex.
HTM performance shows scalability since the HTM version
remains conflict-free, whereas the lock-based version
collapses with increased contention. The Exists benchmark
is similar to Len, where each goroutine searches one item in
a set containing only one item. It scales almost as well as Len,
but more work is done in the critical section, which amortizes
RWMutex’s overhead, and slightly reduces HTM’s advantage.
The Flatten benchmark reads 50 elements from a shared
map into a private array, with a layer of caching that eliminates
repeated map scanning. It holds a Mutex to serialize concurrent
accesses to the map/cache. The HTM version avoids the
serialization and shows scalable performance for 1-4 cores.
At 8 cores, the number of conflicts resulting from updating
the cache rises, which makes perceptron not use the HTM,
and hence there is no speedup. The Clear benchmark has true
conflicts, and there is no speedup, but the HTM does not sig-
nificantly degrade the performance. Overall, utilizing GOCC
results in more than 100% geomean performance gain while
introducing less than 4% slowdown in a single core setting.

Zap [17] is a library that implements fast and structured log-
ging in Go. Being a logging library, it has several IO operations,

USENIX Association 2021 USENIX Annual Technical Conference 949

and hence GOCC rewrote fewer locks. Compared with other
repositories, the improvement on zap is relatively mild. Due
to arguably mild speedups on Zap, a large number of bench-
marks, we omit a deeper analysis of Zap results. Slowdowns are
rare, the biggest being 7%. Overall, we observed a mild ⇠4%
geometric mean speedup with the best case 28% speedup.

Fastcache [18] is a fast, scalable, in-memory cache. The
transformed code delivers a maximum of 35.60% speedup and
a geomean of 15.65% speedup across all benchmarks.

In the CacheGet benchmark, goroutines repeatedly invoke
the Get function, which uses an RWMutex to protect a shared
map. Get has inter-procedural nested but non-conflicting
locks, all of which are transformed into HTM. Get looks up
a key in the map and returns a value blob. The critical section
of Get contains a few atomic add instructions, which update
shared variables. Transactional conflicts on the shared atomic
adds are fewer at low core numbers, and the speedup is visible;
however, at larger core counts, the conflicts increase, and the
speedup vanishes. Fortunately, the perceptron kicks in and
avoids any performance collapse.

The CacheHas benchmark is virtually the same as
CacheGet, but its critical section is shorter since it does not
return a populated value buffer. Hence, the speedups are higher
due to fewer conflicts, but it follows the same performance
pattern as CacheGet.

In the CacheSetGet benchmark, each goroutine has two
loops: the first loop repeatedly invokes Set and the second loop
repeatedly invokes Get. The Set function, which inserts a key-
value pair into the map, may raise a panic if certain constraints
are violated. Hence, GOCC does not modify a Lock() present
in Set. The Get function is already described previously.

Since all goroutines first attempt Set, where Go’s default
locks are being used, the runtime recognizes it as a starved
mutex and takes away the time slice of some of the goroutines.
This runtime behavior reduces the number of lock contenders
and, as a result, a few goroutines monopolize the lock. These
goroutines quickly finish their series of Set operations and
proceed into calling Get in a loop. The contention is lower on
Get also since the load is now split between Get and Set with
some goroutines on hold. The net effect is a high throughput
for the whole benchmark.

It is worth noting that the only other benchmark which
invokes the Set function is the non-sensitive benchmark
CacheSet. Even though CacheSet exhibits no performance
improvement, and CacheGet shows mild performance
improvement, their composition in CacheSetGet leads to
secondary effects causing much higher performance gain at
higher core counts.

6.2 Perceptron Evaluation
We assess the effectiveness of perceptron using the Tally
benchmarks. We compare the performance with and without
the perceptron machinery. In the absence of the perceptron,

-1
.6
3

1.
64

-2
.7
8

-9
.8
1

-3
.6
9

-8
.0
1

-2
.4
6

-9
.3
9

-3
4.
90

-1
3.
06-2
.7
3

0.
14

-1
.1
2

14
4.
68

10
.7
4

-2
9.
71

-5
.9
9

-6
.6
7

22
.5
4

-3
.4
4

-2
.1
6

-2
.9
1

-0
.6
2

28
3.
39

17
.6
5

-6
5.
05

-5
6.
09

-1
9.
90 7.
57

-1
6.
89-3
.7
8

-2
.0
6

1.
00

26
7.
13

18
.6
8

-7
0.
74

-6
4.
26

-1
8.
04 37

.0
0

-1
2.
61

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

CounterAlloc SanitizedCA non sensitive
(21)

sensitive (3) GeoMean

Im
pr

ov
em

en
t i

n
%

1 core 1 core NP

2 cores 2 cores NP

4 cores 4 cores NP

8 cores 8 cores NP

Figure 10: Results on Tally to show the effectiveness of perceptron.
NP=)No Perceptron.

we always attempt HTM. In the results presented in Figure 10,
we can observe that the perceptron is effective in eliminating
any performance loss. For example, CounterAllocation and
SanitizedCounterAllocation are HTM-unfriendly benchmarks
and cause aborts frequently. Perceptron quickly learns to move
away from HTM and keeps using the slowpath. Therefore,
there is minimal performance loss for the perceptron case.

Finally, we setup a synthetic benchmark — a conflict-free
critical section with 1000 counter updates — to evaluate
the overhead of the perceptron machinery. We measured the
perceptron prediction overhead to be 0.65% and weight update
overhead to be 0.73% for a total of only 1.38%.

7 Conclusions

GOCC is a source-to-source transformation tool to speed up
lock-based pessimistic concurrency control in Go programs
with Hardware Transactional Memory. GOCC combines
thorough static analysis with intelligent runtime control to
expose additional parallelism available in Go programs. GOCC
keeps the developer in the loop, minimizes code changes via
execution profiles, and targets only those critical sections
that are likely to improve with HTM. The experimental
results from real-world Go packages show that GOCC delivers
significant (up to 10⇥), scalable performance for concurrent
Go code that uses locks while exhibiting rare and relatively
small slowdowns.

8 Availability

GOCC is available as an open-source tool [3].

9 Acknowledgement

This material is based upon work supported in part by the
National Science Foundation under Gran No. 1763699,
1717779, 1563935. We thank our shepherd Michael Spear and
the anonymous reviewers for their feedback.

950 2021 USENIX Annual Technical Conference USENIX Association

References

[1] GitHub - linux4life798/safetyfast: An Go library of syn-
chronization primitives to help make use of hardware
transactional memory (HTM). https://github.com/
linux4life798/safetyfast.

[2] Go by Example: Closures. https://
gobyexample.com/closures.

[3] Go Optimistic Concurrency Control (GOCC). https:
//github.com/uber-research/GOCC.

[4] Golang benchmark RunParallel API. https://
golang.org/pkg/testing/#B.RunParallel.

[5] Intel 64 and IA-32 Architectures Optimization Reference
Manual. https://www.intel.com/content/dam/
www/public/us/en/documents/manuals/64-ia-
32-architectures-optimization-manual.pdf.

[6] Package astutil. https://godoc.org/golang.org/x/
tools/go/ast/astutil.

[7] Package callgraph. https://pkg.go.dev/
golang.org/x/tools/go/callgraph.

[8] Package format. https://golang.org/pkg/go/
format/.

[9] Package go/types. https://golang.org/pkg/go/
types/.

[10] Package reflect. https://golang.org/pkg/
reflect/.

[11] Package sync. https://golang.org/pkg/sync/.

[12] patrickmn/go-cache: An in-memory key:value store/-
cache (similar to Memcached) library for Go, suitable
for single-machine applications. https://github.com/
patrickmn/go-cache.

[13] Reentrant Mutex. https://en.wikipedia.org/wiki/
Reentrant_mutex.

[14] Solved: A low background number of - Intel Com-
munity. https://community.intel.com/t5/
Software-Tuning-Performance/TSX-conflict-
aborts-for-single-threaded-applications/m-
p/983986#M3190.

[15] sync: Mutex performance collapses with high con-
currency. https://github.com/golang/go/issues/
33747.

[16] testing - The Go Programming Language. https://
golang.org/pkg/testing/.

[17] uber-go/zap: Blazing fast, structured, leveled logging in
Go. https://github.com/uber-go/zap.

[18] VictoriaMetrics/fastcache: Fast thread-safe inmemory
cache for big number of entries in Go. Minimizes GC
overhead. https://github.com/VictoriaMetrics/
fastcache.

[19] Why Locking in Go much slower than Java? https:
//stackoverflow.com/questions/39815723/why-
locking-in-go-much-slower-than-java-lots-
of-time-spent-in-mutex-lock-mut.

[20] Why Use the Go Language for Your Project?
https://nix-united.com/blog/why-use-the-
go-language-for-your-project/.

[21] Workiva/go-datastructures: A collection of useful, per-
formant, and threadsafe Go datastructures. https://
github.com/Workiva/go-datastructures.

[22] Yehuda Afek, Amir Levy, and Adam Morrison. Software-
Improved Hardware Lock Elision. In Proceedings of
the 2014 ACM Symposium on Principles of Distributed
Computing, PODC ’14, page 212–221, New York, NY,
USA, 2014. Association for Computing Machinery.

[23] Yehuda Afek, Alexander Matveev, Oscar R. Moll, and
Nir Shavit. Amalgamated lock-elision. In Yoram Moses,
editor, Distributed Computing, pages 309–324, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[24] Glenn Ammons, Thomas Ball, and James R. Larus.
Exploiting Hardware Performance Counters with Flow
and Context Sensitive Profiling. In Proceedings of the
ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, PLDI ’97, page
85–96, New York, NY, USA, 1997. Association for
Computing Machinery.

[25] Lars Ole Andersen. Program Analysis and Specialization
for the C Programming Language. Technical report,
University of Copenhagen, 1994.

[26] David F. Bacon and Peter F. Sweeney. Fast Static Anal-
ysis of C++ Virtual Function Calls. In Proceedings of
the 11th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’96, page 324–341, New York, NY, USA,
1996. Association for Computing Machinery.

[27] Vincent Blanchon. Go: Mutex and Starvation.
https://medium.com/a-journey-with-go/go-
mutex-and-starvation-3f4f4e75ad50, Sep 2019.

[28] Vincent Blanchon. Go: How to Reduce
Lock Contention with the Atomic Package.
https://medium.com/a-journey-with-go/go-

USENIX Association 2021 USENIX Annual Technical Conference 951

https://github.com/linux4life798/safetyfast
https://github.com/linux4life798/safetyfast
https://gobyexample.com/closures
https://gobyexample.com/closures
https://github.com/uber-research/GOCC
https://github.com/uber-research/GOCC
https://golang.org/pkg/testing/#B.RunParallel
https://golang.org/pkg/testing/#B.RunParallel
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://godoc.org/golang.org/x/tools/go/ast/astutil
https://godoc.org/golang.org/x/tools/go/ast/astutil
https://pkg.go.dev/golang.org/x/tools/go/callgraph
https://pkg.go.dev/golang.org/x/tools/go/callgraph
https://golang.org/pkg/go/format/
https://golang.org/pkg/go/format/
https://golang.org/pkg/go/types/
https://golang.org/pkg/go/types/
https://golang.org/pkg/reflect/
https://golang.org/pkg/reflect/
https://golang.org/pkg/sync/
https://github.com/patrickmn/go-cache
https://github.com/patrickmn/go-cache
https://en.wikipedia.org/wiki/Reentrant_mutex
https://en.wikipedia.org/wiki/Reentrant_mutex
https://community.intel.com/t5/Software-Tuning-Performance/TSX-conflict-aborts-for-single-threaded-applications/m-p/983986#M3190
https://community.intel.com/t5/Software-Tuning-Performance/TSX-conflict-aborts-for-single-threaded-applications/m-p/983986#M3190
https://community.intel.com/t5/Software-Tuning-Performance/TSX-conflict-aborts-for-single-threaded-applications/m-p/983986#M3190
https://community.intel.com/t5/Software-Tuning-Performance/TSX-conflict-aborts-for-single-threaded-applications/m-p/983986#M3190
https://github.com/golang/go/issues/33747
https://github.com/golang/go/issues/33747
https://golang.org/pkg/testing/
https://golang.org/pkg/testing/
https://github.com/uber-go/zap
https://github.com/VictoriaMetrics/fastcache
https://github.com/VictoriaMetrics/fastcache
https://stackoverflow.com/questions/39815723/why-locking-in-go-much-slower-than-java-lots-of-time-spent-in-mutex-lock-mut
https://stackoverflow.com/questions/39815723/why-locking-in-go-much-slower-than-java-lots-of-time-spent-in-mutex-lock-mut
https://stackoverflow.com/questions/39815723/why-locking-in-go-much-slower-than-java-lots-of-time-spent-in-mutex-lock-mut
https://stackoverflow.com/questions/39815723/why-locking-in-go-much-slower-than-java-lots-of-time-spent-in-mutex-lock-mut
https://nix-united.com/blog/why-use-the-go-language-for-your-project/
https://nix-united.com/blog/why-use-the-go-language-for-your-project/
https://github.com/Workiva/go-datastructures
https://github.com/Workiva/go-datastructures
https://medium.com/a-journey-with-go/go-mutex-and-starvation-3f4f4e75ad50
https://medium.com/a-journey-with-go/go-mutex-and-starvation-3f4f4e75ad50
https://medium.com/a-journey-with-go/go-how-to-reduce-lock-contention-with-the-atomic-package-ba3b2664b549

how-to-reduce-lock-contention-with-the-
atomic-package-ba3b2664b549, Aug 2020.

[29] Irina Calciu, Tatiana Shpeisman, Gilles Pokam, and
Maurice Herlihy. Improved single global lock fallback
for best-effort hardware transactional memory. In
Transact 2014 Workshop. ACM, page 54, 2014.

[30] Milind Chabbi. pprof++: A Go Profiler with
Hardware Performance Monitoring. https:
//eng.uber.com/pprof-go-profiler/, May 2020.

[31] Milind Chabbi, Abdelhalim Amer, Shasha Wen, and
Xu Liu. An Efficient Abortable-locking Protocol for
Multi-level NUMA Systems. In Vivek Sarkar and
Lawrence Rauchwerger, editors, Proceedings of the
22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Austin, TX, USA,
February 4-8, 2017, pages 61–74. ACM, 2017.

[32] Milind Chabbi and John Mellor-Crummey. Contention-
Conscious, Locality-Preserving Locks. In Proceedings
of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’16, New York,
NY, USA, 2016. Association for Computing Machinery.

[33] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud
Bhandari. Atlas: Leveraging Locks for Non-Volatile
Memory Consistency. In Proceedings of the 2014
ACM International Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’14, page 433–452, New York, NY, USA,
2014. Association for Computing Machinery.

[34] Keith Chapman, Antony L. Hosking, and J. Eliot B.
Moss. Hybrid STM/HTM for Nested Transactions
on OpenJDK. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2016, page 660–676, New York, NY, USA,
2016. Association for Computing Machinery.

[35] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently Comput-
ing Static Single Assignment Form and the Control
Dependence Graph. ACM Trans. Program. Lang. Syst.,
13(4):451–490, October 1991.

[36] Luke Dalessandro, Franois Carouge, Sean White, Yossi
Lev, Mark Moir, Michael L. Scott, and Michael F. Spear.
Hybrid NOrec: A Case Study in the Effectiveness of Best
Effort Hardware Transactional Memory. In Proceedings
of the Sixteenth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS XVI, page 39–52, New York,
NY, USA, 2011. Association for Computing Machinery.

[37] Dave Dice, Maurice Herlihy, Doug Lea, Yossi Lev, Victor
Luchangco, Wayne Mesard, Mark Moir, Kevin Moore,
and Dan Nussbaum. Applications of the adaptive transac-
tional memory test platform. In 3rd ACM SIGPLAN Work-
shop on Transactional Computing, pages 1–10, 2008.

[38] Dave Dice, Alex Kogan, and Yossi Lev. Refined
Transactional Lock Elision. SIGPLAN Not., 51(8),
February 2016.

[39] Dave Dice, Alex Kogan, Yossi Lev, Timothy Merrifield,
and Mark Moir. Adaptive Integration of Hardware and
Software Lock Elision Techniques. In Proceedings of
the 26th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’14, page 188–197, New York,
NY, USA, 2014. Association for Computing Machinery.

[40] Dave Dice, Alex Kogan, Yossi Lev, Timothy Merrifield,
and Mark Moir. Adaptive Integration of Hardware and
Software Lock Elision Techniques. In Proceedings of
the 26th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’14, page 188–197, New York,
NY, USA, 2014. Association for Computing Machinery.

[41] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum.
Early Experience with a Commercial Hardware Trans-
actional Memory Implementation. SIGARCH Comput.
Archit. News, 37(1):157–168, March 2009.

[42] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum.
Early experience with a commercial hardware transac-
tional memory implementation. In Proceedings of the
14th international conference on Architectural support
for programming languages and operating systems,
pages 157–168, 2009.

[43] Dave Dice, Ori Shalev, and Nir Shavit. Transactional
Locking II. In Proceedings of the 20th International
Conference on Distributed Computing, DISC’06, page
194–208, Berlin, Heidelberg, 2006. Springer-Verlag.

[44] Nuno Diegues and Paolo Romano. Self-Tuning Intel
Transactional Synchronization Extensions. In 11th
International Conference on Autonomic Computing
(ICAC 14), pages 209–219, Philadelphia, PA, June 2014.
USENIX Association.

[45] Nuno Diegues, Paolo Romano, and Luís Rodrigues.
Virtues and Limitations of Commodity Hardware
Transactional Memory. In Proceedings of the 23rd
International Conference on Parallel Architectures and
Compilation, PACT ’14, page 3–14, New York, NY,
USA, 2014. Association for Computing Machinery.

[46] Google. Effective Go - The Go Programming Language.
https://golang.org/doc/effective_go.html.

[47] Google. Kubernetes. https://kubernetes.io/.

952 2021 USENIX Annual Technical Conference USENIX Association

https://medium.com/a-journey-with-go/go-how-to-reduce-lock-contention-with-the-atomic-package-ba3b2664b549
https://medium.com/a-journey-with-go/go-how-to-reduce-lock-contention-with-the-atomic-package-ba3b2664b549
https://eng.uber.com/pprof-go-profiler/
https://eng.uber.com/pprof-go-profiler/
https://golang.org/doc/effective_go.html
https://kubernetes.io/

[48] Google. Profiling Go Programs. https:
//blog.golang.org/pprof.

[49] Google. The Go Programming Language
Specification. https://golang.org/ref/
spec#Defer_statements.

[50] Susan L Graham, Peter B Kessler, and Marshall K McKu-
sick. An execution profiler for modular programs. Soft-
ware: Practice and Experience, 13(8):671–685, 1983.

[51] Rachid Guerraoui, Michal Kapalka, and Jan Vitek.
STMBench7: A Benchmark for Software Transactional
Memory. In Proceedings of the 2nd ACM SIGOPS/Eu-
roSys European Conference on Computer Systems 2007,
EuroSys ’07, page 315–324, New York, NY, USA, 2007.
Association for Computing Machinery.

[52] Tim Harris and Keir Fraser. Language Support
for Lightweight Transactions. SIGPLAN Not.,
38(11):388–402, October 2003.

[53] Maurice Herlihy and J Eliot B Moss. Transactional mem-
ory: Architectural support for lock-free data structures. In
Proceedings of the 20th annual international symposium
on computer architecture, pages 289–300, 1993.

[54] Maurice Herlihy and Nir Shavit. The Art of Multiproces-
sor Programming, Revised Reprint. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition,
2012.

[55] Michael Hind. Pointer Analysis: Haven’t We Solved
This Problem Yet? In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE ’01, page
54–61, New York, NY, USA, 2001. Association for
Computing Machinery.

[56] Jiamin Huang, Barzan Mozafari, and Thomas F. Wenisch.
Statistical Analysis of Latency Through Semantic Profil-
ing. In Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys ’17, page 64–79, New
York, NY, USA, 2017. Association for Computing
Machinery.

[57] Joseph Izraelevitz, Alex Kogan, and Yossi Lev. Implicit
acceleration of critical sections via unsuccessful spec-
ulation. 11th ACM SIGPLAN Wkshp. on Transactional
Computing, TRANSACT, 16, 2016.

[58] Christian Jacobi, Timothy Slegel, and Dan Greiner.
Transactional Memory Architecture and Implementation
for IBM System Z. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, page 25–36, USA, 2012.
IEEE Computer Society.

[59] Daniel A Jiménez and Calvin Lin. Dynamic branch
prediction with perceptrons. In Proceedings HPCA
Seventh International Symposium on High-Performance
Computer Architecture, pages 197–206. IEEE, 2001.

[60] Richard Johnson, David Pearson, and Keshav Pingali.
The Program Structure Tree: Computing Control
Regions in Linear Time. In Proceedings of the ACM
SIGPLAN 1994 Conference on Programming Language
Design and Implementation, PLDI ’94, page 171–185,
New York, NY, USA, 1994. Association for Computing
Machinery.

[61] Tomas Karnagel, Roman Dementiev, Ravi Rajwar,
Konrad Lai, Thomas Legler, Benjamin Schlegel, and
Wolfgang Lehner. Improving in-memory database index
performance with Intel® Transactional Synchronization
Extensions. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA),
pages 476–487. IEEE, 2014.

[62] Terrance Kelly. Programming Workbench Hand-Over-
Hand Locking for Highly Concurrent Collections.
https://www.usenix.org/system/files/login/
articles/login_fall20_14_kelly.pdf, 2020.

[63] Andi Kleen. Lock elision in the GNU C library.
https://lwn.net/Articles/534758/, January 2013.

[64] Andi Kleen. Scaling Existing Lock-Based Applications
with Lock Elision: Lock Elision Enables Existing
Lock-Based Programs to Achieve the Performance
Benefits of Nonblocking Synchronization and Fine-
Grain Locking with Minor Software Engineering Effort.
Queue, 12(1):20–27, January 2014.

[65] William Landi and Barbara G. Ryder. Pointer-Induced
Aliasing: A Problem Classification. In Proceedings
of the 18th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’91, page
93–103, New York, NY, USA, 1991. Association for
Computing Machinery.

[66] Johannes Lerch, Johannes Späth, Eric Bodden, and
Mira Mezini. Access-Path Abstraction: Scaling
Field-Sensitive Data-Flow Analysis with Unbounded
Access Paths. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software
Engineering, ASE ’15, page 619–629. IEEE Press, 2015.

[67] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,
Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.
Taming Performance Variability. In Proceedings of the
13th USENIX Conference on Operating Systems Design
and Implementation, OSDI’18, page 409–425, USA,
2018. USENIX Association.

USENIX Association 2021 USENIX Annual Technical Conference 953

https://blog.golang.org/pprof
https://blog.golang.org/pprof
https://golang.org/ref/spec#Defer_statements
https://golang.org/ref/spec#Defer_statements
https://www.usenix.org/system/files/login/articles/login_fall20_14_kelly.pdf
https://www.usenix.org/system/files/login/articles/login_fall20_14_kelly.pdf
https://lwn.net/Articles/534758/

[68] Dmitri Melikyan. Detecting Lock Contention in Go.
https://www.instana.com/blog/detecting-lock-
contention-in-go/, March 2016.

[69] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman,
Ali-Reza Adl-Tabatabai, Richard L. Hudson, Bratin
Saha, and Adam Welc. Practical Weak-Atomicity
Semantics for Java STM. In Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’08, page 314–325, New York, NY,
USA, 2008. Association for Computing Machinery.

[70] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman,
Ali-Reza Adl-Tabatabai, Richard L. Hudson, Bratin
Saha, and Adam Welc. Single Global Lock Semantics
in a Weakly Atomic STM. SIGPLAN Not., 43(5):15–26,
May 2008.

[71] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M.
Michael, and Hisanobu Tomari. Quantitative Compari-
son of Hardware Transactional Memory for Blue Gene/Q,
ZEnterprise EC12, Intel Core, and POWER8. SIGARCH
Comput. Archit. News, 43(3S):144–157, June 2015.

[72] Martin Pohlack and Stephan Diestelhorst. From
lightweight hardware transactional memory to
lightweight lock elision. https://www.cs.purdue.edu/
sss/projects/transact11/papers/Pohlack.pdf,
January 2011.

[73] Ravi Rajwar and James R. Goodman. Speculative Lock
Elision: Enabling Highly Concurrent Multithreaded Ex-
ecution. In Proceedings of the 34th Annual ACM/IEEE
International Symposium on Microarchitecture, MICRO
34, page 294–305, USA, 2001. IEEE Computer Society.

[74] Torvald Riegel, Patrick Marlier, Martin Nowack, Pascal
Felber, and Christof Fetzer. Optimizing Hybrid Trans-
actional Memory: The Importance of Nonspeculative
Operations. In Proceedings of the Twenty-Third Annual
ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’11, page 53–64, New York, NY,
USA, 2011. Association for Computing Machinery.

[75] Carl RITSON and Frederick BARNES. An Eval-
uation of Intel’s Restricted Transactional Memory
for CPAs. https://core.ac.uk/download/pdf/
18531106.pdf.

[76] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear.
Transactionalizing legacy code: An experience report
using GCC and memcached. ACM SIGARCH Computer
Architecture News, 42(1):399–412, 2014.

[77] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L.
Hudson, Chi Cao Minh, and Benjamin Hertzberg.
McRT-STM: A High Performance Software Transac-
tional Memory System for a Multi-Core Runtime. In

Proceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’06, page 187–197, New York, NY, USA, 2006.
Association for Computing Machinery.

[78] Michael L. Scott and William N. Scherer III. Scalable
queue-based spin locks with timeout. In Michael T. Heath
and Andrew Lumsdaine, editors, Proceedings of the 2001
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPOPP’01), Snowbird, Utah,
USA, June 18-20, 2001, pages 44–52. ACM, 2001.

[79] Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Robert
Geva, Yang Ni, and Adam Welc. Towards Transactional
Memory Semantics for C++. In Proceedings of the
Twenty-First Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA ’09, page 49–58,
New York, NY, USA, 2009. Association for Computing
Machinery.

[80] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-
Tabatabai, Steven Balensiefer, Dan Grossman, Richard L.
Hudson, Katherine F. Moore, and Bratin Saha. Enforcing
Isolation and Ordering in STM. In Proceedings of
the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’07, page
78–88, New York, NY, USA, 2007. Association for
Computing Machinery.

[81] Gustavo Sousa and Alexandro Baldassin. FGSCM: A
fine-grained approach to transactional lock elision. In
29th International Symposium on Computer Architecture
and High Performance Computing, SBAC-PAD 2017,
Campinas, Brazil, October 17-20, 2017, pages 113–120.
IEEE Computer Society, 2017.

[82] Michael F. Spear, Maged M. Michael, and Christoph von
Praun. RingSTM: Scalable Transactions with a Single
Atomic Instruction. In Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’08, page 275–284, New York, NY,
USA, 2008. Association for Computing Machinery.

[83] Pengfei Su, Shuyin Jiao, Milind Chabbi, and Xu Liu.
Pinpointing Performance Inefficiencies via Lightweight
Variance Profiling. In Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[84] David Tarjan and Kevin Skadron. Merging path and
gshare indexing in perceptron branch prediction. ACM
transactions on architecture and code optimization
(TACO), 2(3):280–300, 2005.

[85] Linda Torczon and Keith Cooper. Engineering A
Compiler. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2nd edition, 2007.

954 2021 USENIX Annual Technical Conference USENIX Association

https://www.instana.com/blog/detecting-lock-contention-in-go/
https://www.instana.com/blog/detecting-lock-contention-in-go/
https://www.cs.purdue.edu/sss/projects/transact11/papers/Pohlack.pdf
https://www.cs.purdue.edu/sss/projects/transact11/papers/Pohlack.pdf
https://core.ac.uk/download/pdf/18531106.pdf
https://core.ac.uk/download/pdf/18531106.pdf

[86] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang.
Understanding Real-World Concurrency Bugs in Go.
In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, page
865–878, New York, NY, USA, 2019. Association for
Computing Machinery.

[87] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simulta-
neous multithreading: Maximizing on-chip parallelism.
In Proceedings 22nd Annual International Symposium
on Computer Architecture, pages 392–403, 1995.

[88] Uber. Tally: A Go metrics interface with
fast buffered metrics and third party reporters.
https://github.com/uber-go/tally.

[89] Filippo Valsorda. Creative foot-shooting with Go RW-
Mutex. https://blog.cloudflare.com/creative-
foot-shooting-with-go-rwmutex/, Oct 2015.

[90] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson
Amaral, Martin Ohmacht, Christopher Barton, Raul
Silvera, and Maged Michael. Evaluation of Blue Gene/Q
Hardware Support for Transactional Memories. In
Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques,
PACT ’12, page 127–136, New York, NY, USA, 2012.
Association for Computing Machinery.

[91] Qingsen Wang, Pengfei Su, Milind Chabbi, and Xu Liu.
Lightweight Hardware Transactional Memory Profiling.
In Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming, PPoPP ’19, page
186–200, New York, NY, USA, 2019. Association for
Computing Machinery.

[92] Richard M. Yoo, Christopher J. Hughes, Konrad
Lai, and Ravi Rajwar. Performance Evaluation of
Intel Transactional Synchronization Extensions for
High-Performance Computing. In Proceedings of the In-
ternational Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’13, New York,
NY, USA, 2013. Association for Computing Machinery.

[93] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha,
Ali-Reza Adl-Tabatabai, and Hsien-Hsin S. Lee. Kicking
the Tires of Software Transactional Memory: Why the
Going Gets Tough. In Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’08, page 265–274, New York, NY,
USA, 2008. Association for Computing Machinery.

[94] Zhizhou Zhang, Milind Chabbi, Adam Welc, and
Timothy Sherwood. Optimistic Concurrency Control
for Real-world Go Programs (Extended Version with
Appendix), 2021.

[95] L. Zheng, X. Liao, H. Jin, and H. Liu. Exploiting the
Parallelism Between Conflicting Critical Sections with
Partial Reversion. IEEE Transactions on Parallel and
Distributed Systems, 28(12):3443–3457, 2017.

[96] Lukasz Ziarek, Adam Welc, Ali-Reza Adl-Tabatabai, Vi-
jay Menon, Tatiana Shpeisman, and Suresh Jagannathan.
A Uniform Transactional Execution Environment for
Java. In Proceedings of the 22nd European Conference
on Object-Oriented Programming, ECOOP ’08, page
129–154, Berlin, Heidelberg, 2008. Springer-Verlag.

[97] Ferad Zyulkyarov, Vladimir Gajinov, Osman Unsal,
Adrian Cristal, Eduard Ayguadé, Tim Harris, and Mateo
Valero. Atomic Quake: Using Transactional Memory
in an Interactive Multiplayer Game Server. volume 44,
pages 25–34, 04 2009.

USENIX Association 2021 USENIX Annual Technical Conference 955

https://github.com/uber-go/tally
https://blog.cloudflare.com/creative-foot-shooting-with-go-rwmutex/
https://blog.cloudflare.com/creative-foot-shooting-with-go-rwmutex/

	Introduction
	Challenges
	Related Work
	Gocc Overview
	Gocc Guarantees and Limitations

	Gocc Design and Implementation
	Terminology
	Analyzer
	Scope of Transformation
	Matching LU-pair in the Absence of Nested Locks
	Lock Nesting
	Critical Sections with Function Calls
	The defer Statement
	Profiles to Filter Hot Critical Sections

	Transformer
	Adaptive HTM Runtime: optiLib
	Dynamic adjustment via perceptron
	Alleviating HTM overhead

	Gocc Evaluation
	Results on Popular Go Programs
	Perceptron Evaluation

	Conclusions
	Availability
	Acknowledgement
	Justification for using the dominance and post-dominance relationship
	Splicing SESE regions for maximal LU-pairing
	Interoperability of lock-nesting with HTM
	Algorithm of optiLock

